Whole Exome Sequencing of Adult Indians with Apparently Acquired Aplastic Anaemia: Initial Experience at Tertiary Care Hospital
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
TERT and CYP3A5 Were Shown to Be Harbouring Pathogenic Mutations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Levi, M.; Toh, C.H.; Thachil, J.; Watson, H.G. Guidelines for the diagnosis and management of Aplastic Anaemia, British Committee for Standards in Haematology. Br. J. Haematol. 2009, 145, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Shallis, R.M.; Ahmad, R.; Zeidan, A.M. Aplastic anemia: Etiology, molecular pathogenesis, and emerging concepts. Eur. J. Haematol. 2018, 101, 711–720. [Google Scholar] [CrossRef] [PubMed]
- Kamat, G.; Math, R.K.; Goni, D.; Balikai, G.; Savanur, A.; Mudennavar, N.; Javaregowda, P.K. Use of Cyclosporine A and danazol in treatment of aplastic anemia: A real-world data from a teaching hospital in South India. Asian J. Med. Sci. 2022, 13, 223–226. [Google Scholar] [CrossRef]
- Li, H.; Long, Z.; Wang, T.; Han, B. Stanozolol and Danazol Have Different Effects on Hematopoiesis in the Murine Model of Immune-Mediated Bone Marrow Failure. Front. Med. 2021, 8, 615195. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Townsley, D.M.; Dumitriu, B.; Liu, D.; Biancotto, A.; Weinstein, B.; Chen, C.; Hardy, N.; Mihalek, A.D.; Lingala, S.; Kim, Y.J.; et al. Danazol Treatment for Telomere Diseases. N. Engl. J. Med. 2016, 374, 1922–1931. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Young, N. Aplastic Anemia. N. Engl. J. Med. 2018, 379, 1643–1656. [Google Scholar] [CrossRef]
- Mehta, P.A.; Ebens, C. Fanconi Anemia. 2002 Feb 14 [Updated 2021 Jun 3]. In GeneReviews® [Internet]; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993–2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK1401/ (accessed on 3 September 2024). [PubMed]
- Joshi, G.; Arthur, N.B.J.; Geetha, T.S.; Datari, P.V.R.; Modak, K.; Roy, D.; Chaudhury, A.D.; Sundaraganesan, P.; Priyanka, S.; Na, F.; et al. Comprehensive laboratory diagnosis of Fanconi anaemia: Comparison of cellular and molecular analysis. J. Med. Genet. 2023, 60, 801–809. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cong, Y.S.; Wright, W.E.; Shay, J.W. Human telomerase and its regulation. Microbiol. Mol. Biol. Rev. 2002, 66, 407–425. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Calado, R.T.; Ly, H.; Kajigaya, S.; Baerlocher, G.M.; Chanock, S.J.; Lansdorp, P.M.; Young, N.S. Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N. Engl. J. Med. 2005, 352, 1413–1424. [Google Scholar] [CrossRef] [PubMed]
- Killick, S.B.; Bown, N.; Cavenagh, J.; Dokal, I.; Foukaneli, T.; Hill, A.; Hillmen, P.; Ireland, R.; Kulasekararaj, A.; Mufti, G.; et al. British Society for Standards in Haematology. Guidelines for the diagnosis and management of adult aplastic anaemia. Br. J. Haematol. 2016, 172, 187–207, Erratum in Br. J. Haematol. 2016, 175, 546. [Google Scholar] [CrossRef] [PubMed]
- Heuser, M.; Schlarmann, C.; Dobbernack, V.; Panagiota, V.; Wiehlmann, L.; Walter, C.; Beier, F.; Ziegler, P.; Yun, H.; Kade, S.; et al. Genetic characterization of acquired aplastic anemia by targeted sequencing. Haematologica. 2014, 99, e165–e167. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Singh, I.; Nunia, V.; Sharma, R.; Barupal, J.; Govindaraj, P.; Jain, R.; Gupta, G.N.; Goyal, P.K. Mutational analysis of telomere complex genes in Indian population with acquired aplastic anemia. Leuk. Res. 2015, 39, 1263–1269. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Y.; Ge, H.; Li, N.; Liu, C.; Wang, T.; Fu, R.; Shao, Z. Identification of potential pathogenic genes for severe aplastic anemia by whole-exome sequencing. J. Clin. Lab. Anal. 2022, 36, e24438. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Durrani, J.; Maciejewski, J.P. Idiopathic aplastic anemia vs hypocellular myelodysplastic syndrome. Hematol. Am. Soc. Hematol. Educ. Program. 2019, 2019, 97–104. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Boddu, P.C.; Kadia, T.M. Molecular pathogenesis of acquired aplastic anemia. Eur. J. Haematol. 2018, 102, 103–110. [Google Scholar] [CrossRef]
- Steensma, D.P. Clinical consequences of clonal hematopoiesis of indeterminate potential. Hematol. Am. Soc. Hematol. Educ. Program. 2018, 2018, 264–269. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kulasekararaj, A.G.; Jiang, J.; Smith, A.E.; Mohamedali, A.M.; Mian, S.; Gandhi, S.; Gaken, J.; Czepulkowski, B.; Marsh, J.C.W.; Mufti, G.J. Somatic mutations identify a subgroup of aplastic anemia patients who progress to myelodysplastic syndrome. Blood 2014, 124, 2698–2704. [Google Scholar] [CrossRef]
- Savage, S.A.; Viard, M.; O’hUigin, C.; Zhou, W.; Yeager, M.; Li, S.A.; Wang, T.; Ramsuran, V.; Vince, N.; Vogt, A.; et al. Genome-wide Association Study Identifies HLA-DPB1 as a Significant Risk Factor for Severe Aplastic Anemia. Am. J. Hum. Genet. 2020, 106, 264–271. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Walne, A.J.; Dokal, A.; Plagnol, V.; Beswick, R.; Kirwan, M.; de la Fuente, J.; Vulliamy, T.; Dokal, I. Exome sequencing identifies MPL as a causative gene in familial aplastic anemia. Haematologica 2011, 97, 524–528. [Google Scholar] [CrossRef]
- Yoshida, N. Recent advances in the diagnosis and treatment of pediatric acquired aplastic anemia. Int. J. Hematol. 2024, 119, 240–247. [Google Scholar] [CrossRef]
- Storb, R. Allogeneic bone marrow transplantation for aplastic anemia. Int. J. Hematol. 2024, 119, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Rajput, R.V.; Shah, V.; Shalhoub, R.N.; West-Mitchell, K.; Cha, N.R.; Conry-Cantilena, C.; Leitman, S.F.; Young, D.J.; Wells, B.; Aue, G.; et al. Granulocyte transfusions in severe aplastic anemia. Haematologica. 2024, 109, 1792–1799. [Google Scholar] [CrossRef] [PubMed]
- Shimano, K.A.; Rothman, J.A.; Allen, S.W.; Castillo, P.; de Jong, J.L.O.; Dror, Y.; Geddis, A.E.; Lau, B.W.; McGuinn, C.; Narla, A.; et al. Treatment of newly diagnosed severe aplastic anemia in children: Evidence-based recommendations. Pediatr. Blood Cancer. 2024, 16, e31070. [Google Scholar] [CrossRef] [PubMed]
- Piekarska, A.; Pawelec, K.; Szmigielska-Kapłon, A.; Ussowicz, M. The state of the art in the treatment of severe aplastic anemia: Immunotherapy and hematopoietic cell transplantation in children and adults. Front. Immunol. 2024, 15, 1378432. [Google Scholar] [CrossRef]
- Fattizzo, B.; Pasquale, R.; Croci, G.A.; Pettine, L.; Cassanello, G.; Barcellini, W. Aplastic anemia after SARS-CoV-2 infection or vaccines: Case series and literature review. Blood Transfus. 2024, 22, 266–272. [Google Scholar] [CrossRef]
- Guo, H.; Liu, C.; Kang, L.; Liu, C.; Liu, Y. Safety and efficacy of eltrombopag in patients with aplastic anemia: A systematic review and meta-analysis of randomized controlled trials. Hematology 2024, 29, 2335419. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Li, X.; Geng, Q.; Xie, Y.; Zhang, G.; Wei, M.; Ma, Y. Efficacy and safety of immunosuppressive therapy combined with eltrombopag for severe aplastic anemia: A systematic review and meta-analysis. Syst. Rev. 2024, 13, 101. [Google Scholar] [CrossRef]
- Kulasekararaj, A.; Cavenagh, J.; Dokal, I.; Foukaneli, T.; Gandhi, S.; Garg, M.; Griffin, M.; Hillmen, P.; Ireland, R.; Killick, S.; et al. Guidelines for the diagnosis and management of adult aplastic anaemia: A British Society for Haematology Guideline. Br. J. Haematol. 2024, 204, 784–804. [Google Scholar] [CrossRef]
- Chen, M.; Liu, Q.; Gao, Y.; Suo, X.; Ding, X.; Wang, L.; Li, L.; Shao, Y.; Gao, D.; Sun, W.; et al. Cyclosporine plus eltrombopag in the treatment of aplastic anemia with or without antithymocyte immunoglobulin: A multicenter real-world retrospective study. Eur. J. Haematol. 2023, 111, 407–413. [Google Scholar] [CrossRef]
- Pratim, P.P.; Kumar, S.T.; Shilpi, S.; Krishna, G.B.; Biswajit, H.; Aditi, A. Aplastic anemia: A common hematological abnormality among peripheral pancytopenia. N. Am. J. Med. Sci. 2012, 4, 384–388. [Google Scholar] [CrossRef]
- Mehta, S.; Krishnamohan, M.; Gulati, S.; Sharma, N.; Vashishtha, P.; Singh, I. Detection of Mutations in TERT, the Genes for Telomerase Reverse Transcriptase, in Indian Patients of Aplastic Anaemia: A Pilot Study. J. Assoc. Physicians India 2014, 62, 13–17. [Google Scholar] [PubMed]
- Meena, N.; Mathur, P.; Medicherla, K.M.; Suravajhala, P. A Bioinformatics Pipeline for Whole Exome Sequencing: Overview of the Processing and Steps from Raw Data to Downstream Analysis. Bio-Protocol 2018, 20, e2805. [Google Scholar] [CrossRef]
- Jun, G.; Flickinger, M.; Hetrick, K.N.; Romm, J.M.; Doheny, K.F.; Abecasis, G.R.; Boehnke, M.; Kang, H.M. Detecting and Estimating Contamination of Human DNA Samples in Sequencing and Array-Based Genotype Data. Am. J. Hum. Genet. 2012, 91, 839–848. [Google Scholar] [CrossRef] [PubMed]
- Flores-Pérez, C.; Castillejos-López, M.d.J.; Chávez-Pacheco, J.L.; Dávila-Borja, V.M.; Flores-Pérez, J.; Zárate-Castañón, P.; Acosta-Bastidas, M.; Cruz-Escobar, J.; Torres-Espíndola, L.M. The rs776746 variant of CYP3A5 is associated with intravenous midazolam plasma levels and higher clearance in critically ill Mexican paediatric patients. J. Clin. Pharm. Ther. 2021, 46, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.M.; Hao, H.P.; Wang, G.J.; Guo, L.Q.; Min, P.Q. Influence of CYP3A5 genetic polymorphism on cyclosporine A metabolism and elimination in Chinese renal transplant recipients. Acta Pharmacol. Sin. 2006, 27, 1504–1508. [Google Scholar] [CrossRef]
- Büscher, A.K.; Beck, B.B.; Melk, A.; Hoefele, J.; Kranz, B.; Bamborschke, D.; Baig, S.; Lange-Sperandio, B.; Jungraithmayr, T.; Weber, L.T.; et al. German Pediatric Nephrology Association (GPN). Rapid Response to Cyclosporin A and Favorable Renal Outcome in Nongenetic Versus Genetic Steroid-Resistant Nephrotic Syndrome. Clin. J. Am. Soc. Nephrol. 2016, 11, 245–253. [Google Scholar] [CrossRef]
- Robinson, P.S.; Coorens, T.H.H.; Palles, C.; Mitchell, E.; Abascal, F.; Olafsson, S.; Lee, B.C.H.; Lawson, A.R.J.; Lee-Six, H.; Moore, L.; et al. Increased somatic mutation burdens in normal human cells due to defective DNA polymerases. Nat. Genet. 2021, 53, 1434–1442. [Google Scholar] [CrossRef]
- Maciejewski, J.P.; Balasubramanian, S.K. Clinical implications of somatic mutations in aplastic anemia and myelodysplastic syndrome in genomic age. Hematol. Am. Soc. Hematol. Educ. Program. 2017, 2017, 66–72. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Savage, S.A.; Niewisch, M.R. Dyskeratosis Congenita and Related Telomere Biology Disorders. 2009 Nov 12 [updated 2023 Jan 19]. In GeneReviews® [Internet]; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993–2024. [Google Scholar] [PubMed]
- Bestach, Y.; Sieza, Y.; Attie, M.; Riccheri, C.; Verri, V.; Bolesina, M.; Bengió, R.; Larripa, I.; Belli, C. Polymorphisms in TNF and IFNG are associated with clinical characteristics of aplastic anemia in Argentinean population. Leuk. Lymphoma 2015, 56, 1793–1798. [Google Scholar] [CrossRef] [PubMed]
- Mortazavi, Y.; Merk, B.; McIntosh, J.; Marsh, J.C.W.; Schrezenmeier, H.; Rutherford, T.R.; BIOMED II Pathophysiology and Treatment of Aplastic Anaemia Study Group. The spectrum of PIG-A gene mutations in aplastic anemia/paroxysmal nocturnal hemoglobinuria (AA/PNH): A high incidence of multiple mutations and evidence of a mutational hot spot. Blood 2003, 101, 2833–2841. [Google Scholar] [CrossRef] [PubMed]
Sample# | Gene | HGVS ID | RS ID |
---|---|---|---|
30 | TERT | NM_198253.3(TERT):c.915G > A (p.Ala305=) | rs2736098 |
38 | TERT | NC_000005.10:g.1255405G > A | rs33954691 |
50 | TERT | NC_000005.10:g.1255405G > A | rs33954691 |
44 | CYP3A5 | NC_000007.14:g.99672916T > C | rs776746 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehta, S.; Medicherla, K.M.; Gulati, S.; Sharma, N.; Parveen, R.; Mishra, A.K.; Gupta, S.; Suravajhala, P. Whole Exome Sequencing of Adult Indians with Apparently Acquired Aplastic Anaemia: Initial Experience at Tertiary Care Hospital. Diseases 2024, 12, 225. https://doi.org/10.3390/diseases12090225
Mehta S, Medicherla KM, Gulati S, Sharma N, Parveen R, Mishra AK, Gupta S, Suravajhala P. Whole Exome Sequencing of Adult Indians with Apparently Acquired Aplastic Anaemia: Initial Experience at Tertiary Care Hospital. Diseases. 2024; 12(9):225. https://doi.org/10.3390/diseases12090225
Chicago/Turabian StyleMehta, Sudhir, Krishna Mohan Medicherla, Sandhya Gulati, Nidhi Sharma, Rabia Parveen, Ashwani Kumar Mishra, Sonal Gupta, and Prashanth Suravajhala. 2024. "Whole Exome Sequencing of Adult Indians with Apparently Acquired Aplastic Anaemia: Initial Experience at Tertiary Care Hospital" Diseases 12, no. 9: 225. https://doi.org/10.3390/diseases12090225
APA StyleMehta, S., Medicherla, K. M., Gulati, S., Sharma, N., Parveen, R., Mishra, A. K., Gupta, S., & Suravajhala, P. (2024). Whole Exome Sequencing of Adult Indians with Apparently Acquired Aplastic Anaemia: Initial Experience at Tertiary Care Hospital. Diseases, 12(9), 225. https://doi.org/10.3390/diseases12090225