Empirical Treatments for Male Infertility: A Focus on Lifestyle Modifications and Medicines
Abstract
:1. Introduction
2. Literature Search and Review Approach
2.1. Literature Search Strategy
2.2. Inclusion and Exclusion Criteria
- -
- Peer-reviewed articles published within the period of 1979 to 2024;
- -
- Studies that explore the pathophysiology and treatment of male infertility, particularly idiopathic infertility;
- -
- Research examining the role of oxidative stress, environmental factors, and lifestyle modifications in male infertility;
- -
- Articles discussing potential treatments for male infertility, particularly those involving lifestyle modifications and empirical therapies;
- -
- Systematic reviews, meta-analyses, clinical trials, and comprehensive reviews related to male infertility and its treatment.
- -
- Publications not in English;
- -
- Studies that do not directly address male infertility or are not relevant to the empirical treatment approaches discussed in the review;
- -
- Articles without accessible full texts;
- -
- Publications predating 1979, except where they provide foundational knowledge.
2.3. Data Extraction and Synthesis
2.4. Quality Assessment and Limitations
3. Improving Male Fertility through Healthy Lifestyle Habits
3.1. Weight Loss
3.2. Physical Activity
3.3. Smoking
3.4. Alcohol Consumption
4. Empirical Treatments for Male Infertility with Medicines
4.1. Stimulating Spermatogenesis
4.1.1. Gonadotropins
4.1.2. Selective Estrogen Receptor Modulators
4.1.3. Aromatase Inhibitors
4.2. Improving Sperm Quality
4.2.1. Antioxidant and Micronutrient Supplements
4.2.2. Low-Dose Corticosteroids
4.3. Enhancing Sexual Function
4.3.1. Phosphodiesterase-5 Inhibitors (Selective)
4.3.2. Phosphodiesterase-5 Inhibitors (Non-Selective)
4.3.3. Nitric Oxide Donors
4.4. Managing Specific Pathological Conditions
4.4.1. Dopamine Agonists
4.4.2. Kallikrein
4.4.3. Indomethacin
4.4.4. Alpha-Blockers
4.5. Combination Treatments for Male Infertility
5. Future Directions and Research
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Irvine, D.S. Epidemiology and aetiology of male infertility. Hum. Reprod. 1998, 13 (Suppl. S1), 33–44. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, P.; Roychoudhury, S.; Nath, M.; Dutta, S. Oxidative Stress and Idiopathic Male Infertility. Adv. Exp. Med. Biol. 2022, 1358, 181–204. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.H.; Seo, J.T. Empirical medical therapy in idiopathic male infertility: Promise or panacea? Clin. Exp. Reprod. Med. 2014, 41, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Minhas, S.; Bettocchi, C.; Boeri, L.; Capogrosso, P.; Carvalho, J.; Cilesiz, N.C.; Cocci, A.; Corona, G.; Dimitropoulos, K.; Gul, M.; et al. European Association of Urology Guidelines on Male Sexual and Reproductive Health: 2021 Update on Male Infertility. Eur. Urol. 2021, 80, 603–620. [Google Scholar] [CrossRef] [PubMed]
- Dimitriadis, F.; Tsiampali, C.; Chaliasos, N.; Tsounapi, P.; Takenaka, A.; Sofikitis, N. The Sertoli cell as the orchestra conductor of spermatogenesis: Spermatogenic cells dance to the tune of testosterone. Hormones 2015, 14, 479–503. [Google Scholar] [CrossRef]
- Colpi, G.M.; Francavilla, S.; Haidl, G.; Link, K.; Behre, H.M.; Goulis, D.G.; Krausz, C.; Giwercman, A. European Academy of Andrology guideline Management of oligo-astheno-teratozoospermia. Andrology 2018, 6, 513–524. [Google Scholar] [CrossRef]
- Tournaye, H.; Krausz, C.; Oates, R.D. Novel concepts in the aetiology of male reproductive impairment. Lancet Diabetes Endocrinol. 2017, 5, 544–553. [Google Scholar] [CrossRef]
- Hakonsen, L.B.; Thulstrup, A.M.; Aggerholm, A.S.; Olsen, J.; Bonde, J.P.; Andersen, C.Y.; Bungum, M.; Ernst, E.H.; Hansen, M.L.; Ernst, E.H.; et al. Does weight loss improve semen quality and reproductive hormones? Results from a cohort of severely obese men. Reprod. Health 2011, 8, 24. [Google Scholar] [CrossRef]
- Rastrelli, G.; Lotti, F.; Reisman, Y.; Sforza, A.; Maggi, M.; Corona, G. Metabolically healthy and unhealthy obesity in erectile dysfunction and male infertility. Expert. Rev. Endocrinol. Metab. 2019, 14, 321–334. [Google Scholar] [CrossRef]
- Lee, Y.; Dang, J.T.; Switzer, N.; Yu, J.; Tian, C.; Birch, D.W.; Karmali, S. Impact of Bariatric Surgery on Male Sex Hormones and Sperm Quality: A Systematic Review and Meta-Analysis. Obes. Surg. 2019, 29, 334–346. [Google Scholar] [CrossRef]
- World Health Organization. Global Action Plan on Physical Activity 2018–2030: More Active People for a Healthier World; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Ibanez-Perez, J.; Santos-Zorrozua, B.; Lopez-Lopez, E.; Matorras, R.; Garcia-Orad, A. An update on the implication of physical activity on semen quality: A systematic review and meta-analysis. Arch. Gynecol. Obstet. 2019, 299, 901–921. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Harlev, A.; Agarwal, A.; Esteves, S.C. Cigarette Smoking and Semen Quality: A New Meta-analysis Examining the Effect of the 2010 World Health Organization Laboratory Methods for the Examination of Human Semen. Eur. Urol. 2016, 70, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Osadchuk, L.; Kleshchev, M.; Osadchuk, A. Effects of cigarette smoking on semen quality, reproductive hormone levels, metabolic profile, zinc and sperm DNA fragmentation in men: Results from a population-based study. Front. Endocrinol. 2023, 14, 1255304. [Google Scholar] [CrossRef] [PubMed]
- Henriques, M.C.; Santiago, J.; Patricio, A.; Herdeiro, M.T.; Loureiro, S.; Fardilha, M. Smoking Induces a Decline in Semen Quality and the Activation of Stress Response Pathways in Sperm. Antioxidants 2023, 12, 1828. [Google Scholar] [CrossRef]
- Kapawa, A.; Giannakis, D.; Tsoukanelis, K.; Kanakas, N.; Baltogiannis, D.; Agapitos, E.; Loutradis, D.; Miyagawa, I.; Sofikitis, N. Effects of paternal cigarette smoking on testicular function, sperm fertilizing capacity, embryonic development, and blastocyst capacity for implantation in rats. Andrologia 2004, 36, 57–68. [Google Scholar] [CrossRef]
- Jeng, H.A.; Chen, Y.L.; Kantaria, K.N. Association of cigarette smoking with reproductive hormone levels and semen quality in healthy adult men in Taiwan. J. Environ. Sci. Health A Tox Hazard. Subst. Environ. Eng. 2014, 49, 262–268. [Google Scholar] [CrossRef]
- Prentki Santos, E.; Lopez-Costa, S.; Chenlo, P.; Pugliese, M.N.; Curi, S.; Ariagno, J.; Repetto, H.; Sardi, M.; Palaoro, L.; Mendeluk, G. Impact of spontaneous smoking cessation on sperm quality: Case report. Andrologia 2011, 43, 431–435. [Google Scholar] [CrossRef]
- Oba, S.; Inaba, Y.; Shibuya, T.; Oshima, J.; Seyama, K.; Kobayashi, T.; Kunugita, N.; Ino, T. Changes in oxidative stress levels during two weeks of smoking cessation treatment and their association with nutritional characteristics in Japanese smokers. Exp. Ther. Med. 2019, 17, 2757–2764. [Google Scholar] [CrossRef]
- Tang, Q.; Pan, F.; Wu, X.; Nichols, C.E.; Wang, X.; Xia, Y.; London, S.J.; Wu, W. Semen quality and cigarette smoking in a cohort of healthy fertile men. Environ. Epidemiol. 2019, 3, e055. [Google Scholar] [CrossRef]
- Vanegas, J.C.; Chavarro, J.E.; Williams, P.L.; Ford, J.B.; Toth, T.L.; Hauser, R.; Gaskins, A.J. Discrete survival model analysis of a couple’s smoking pattern and outcomes of assisted reproduction. Fertil. Res. Pract. 2017, 3, 5. [Google Scholar] [CrossRef]
- Frappier, J.; Martinaud, A.; Barberet, J.; Bruno, C.; Guilleman, M.; Amblot, C.; Guilloteau, A.; Fauque, P. Effect of paternal smoking on pre-implantation embryonic development: A prospective cohort study. Reprod. Fertil. Dev. 2022, 34, 971–979. [Google Scholar] [CrossRef]
- Taniguchi, R.; Hatakeyama, S.; Ohgi, S.; Yanaihara, A. Effect of Male Cigarette Smoking on In Vitro Fertilization (IVF) Outcomes and Embryo Morphokinetic Parameters. Cureus 2024, 16, e52788. [Google Scholar] [CrossRef] [PubMed]
- Ricci, E.; Al Beitawi, S.; Cipriani, S.; Candiani, M.; Chiaffarino, F.; Vigano, P.; Noli, S.; Parazzini, F. Semen quality and alcohol intake: A systematic review and meta-analysis. Reprod. Biomed. Online 2017, 34, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Muthusami, K.R.; Chinnaswamy, P. Effect of chronic alcoholism on male fertility hormones and semen quality. Fertil. Steril. 2005, 84, 919–924. [Google Scholar] [CrossRef] [PubMed]
- Nguyen-Thanh, T.; Hoang-Thi, A.P.; Anh Thu, D.T. Investigating the association between alcohol intake and male reproductive function: A current meta-analysis. Heliyon 2023, 9, e15723. [Google Scholar] [CrossRef]
- Finelli, R.; Mottola, F.; Agarwal, A. Impact of Alcohol Consumption on Male Fertility Potential: A Narrative Review. Int. J. Environ. Res. Public. Health 2021, 19, 328. [Google Scholar] [CrossRef] [PubMed]
- Guthauser, B.; Boitrelle, F.; Plat, A.; Thiercelin, N.; Vialard, F. Chronic excessive alcohol consumption and male fertility: A case report on reversible azoospermia and a literature review. Alcohol. Alcohol. 2014, 49, 42–44. [Google Scholar] [CrossRef]
- Sermondade, N.; Elloumi, H.; Berthaut, I.; Mathieu, E.; Delarouziere, V.; Ravel, C.; Mandelbaum, J. Progressive alcohol-induced sperm alterations leading to spermatogenic arrest, which was reversed after alcohol withdrawal. Reprod. Biomed. Online 2010, 20, 324–327. [Google Scholar] [CrossRef]
- Nieschlag, E.; Lenzi, A. The conventional management of male infertility. Int. J. Gynaecol. Obstet. 2013, 123 (Suppl. S2), S31–S35. [Google Scholar] [CrossRef]
- Rastrelli, G.; Maggi, M.; Corona, G. Pharmacological management of late-onset hypogonadism. Expert. Rev. Clin. Pharmacol. 2018, 11, 439–458. [Google Scholar] [CrossRef]
- Rastrelli, G.; Corona, G.; Mannucci, E.; Maggi, M. Factors affecting spermatogenesis upon gonadotropin-replacement therapy: A meta-analytic study. Andrology 2014, 2, 794–808. [Google Scholar] [CrossRef] [PubMed]
- Siddiq, F.M.; Sigman, M. A new look at the medical management of infertility. Urol. Clin. N. Am. 2002, 29, 949–963. [Google Scholar] [CrossRef] [PubMed]
- Matorras, R.; Perez, C.; Corcostegui, B.; Pijoan, J.I.; Ramon, O.; Delgado, P.; Rodriguez-Escudero, F.J. Treatment of the male with follicle-stimulating hormone in intrauterine insemination with husband’s spermatozoa: A randomized study. Hum. Reprod. 1997, 12, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Kamischke, A.; Behre, H.M.; Bergmann, M.; Simoni, M.; Schafer, T.; Nieschlag, E. Recombinant human follicle stimulating hormone for treatment of male idiopathic infertility: A randomized, double-blind, placebo-controlled, clinical trial. Hum. Reprod. 1998, 13, 596–603. [Google Scholar] [CrossRef]
- Foresta, C.; Selice, R.; Moretti, A.; Pati, M.A.; Carraro, M.; Engl, B.; Garolla, A. Gonadotropin administration after gonadotropin-releasing-hormone agonist: A therapeutic option in severe testiculopathies. Fertil. Steril. 2009, 92, 1326–1332. [Google Scholar] [CrossRef]
- Knuth, U.A.; Honigl, W.; Bals-Pratsch, M.; Schleicher, G.; Nieschlag, E. Treatment of severe oligospermia with human chorionic gonadotropin/human menopausal gonadotropin: A placebo-controlled, double blind trial. J. Clin. Endocrinol. Metab. 1987, 65, 1081–1087. [Google Scholar] [CrossRef]
- Liu, P.Y.; Handelsman, D.J. The present and future state of hormonal treatment for male infertility. Hum. Reprod. Update 2003, 9, 9–23. [Google Scholar] [CrossRef]
- Cannarella, R.; La Vignera, S.; Condorelli, R.A.; Mongioi, L.M.; Calogero, A.E. FSH dosage effect on conventional sperm parameters: A meta-analysis of randomized controlled studies. Asian J. Androl. 2020, 22, 309–316. [Google Scholar] [CrossRef]
- Verdi, A.; Nasr-Esfahani, M.H.; Forouzanfar, M.; Tavalaee, M. The Effect of Recombinant Human Follicle-Stimulating Hormone on Sperm Quality, Chromatin Status and Clinical Outcomes of Infertile Oligozoospermic Men Candidate for Intracytoplasmic Sperm Injection: A Randomized Clinical Trial. Int. J. Fertil. Steril. 2021, 15, 1–7. [Google Scholar] [CrossRef]
- Ozman, O.; Tosun, S.; Bayazit, N.; Cengiz, S.; Bakircioglu, M.E. Efficacy of the second micro-testicular sperm extraction after failed first micro-testicular sperm extraction in men with nonobstructive azoospermia. Fertil. Steril. 2021, 115, 915–921. [Google Scholar] [CrossRef]
- Cannarella, R.; Condorelli, R.A.; Mongioi, L.M.; Barbagallo, F.; Calogero, A.E.; La Vignera, S. Effects of the selective estrogen receptor modulators for the treatment of male infertility: A systematic review and meta-analysis. Expert. Opin. Pharmacother. 2019, 20, 1517–1525. [Google Scholar] [CrossRef] [PubMed]
- Rambhatla, A.; Mills, J.N.; Rajfer, J. The Role of Estrogen Modulators in Male Hypogonadism and Infertility. Rev. Urol. 2016, 18, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, P.N.; Sigman, M.; Collura, B.; De Jonge, C.J.; Eisenberg, M.L.; Lamb, D.J.; Mulhall, J.P.; Niederberger, C.; Sandlow, J.I.; Sokol, R.Z.; et al. Diagnosis and Treatment of Infertility in Men: AUA/ASRM Guideline PART II. J. Urol. 2021, 205, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Delu, A.; Kiltz, R.J.; Kuznetsov, V.A.; Trussell, J.C. Clomiphene citrate improved testosterone and sperm concentration in hypogonadal males. Syst. Biol. Reprod. Med. 2020, 66, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Gundewar, T.; Kuchakulla, M.; Ramasamy, R. A paradoxical decline in semen parameters in men treated with clomiphene citrate: A systematic review. Andrologia 2021, 53, e13848. [Google Scholar] [CrossRef] [PubMed]
- Kamischke, A.; Nieschlag, E. Analysis of medical treatment of male infertility. Hum. Reprod. 1999, 14 (Suppl. S1), 1–23. [Google Scholar] [CrossRef]
- Chua, M.E.; Escusa, K.G.; Luna, S.; Tapia, L.C.; Dofitas, B.; Morales, M. Revisiting oestrogen antagonists (clomiphene or tamoxifen) as medical empiric therapy for idiopathic male infertility: A meta-analysis. Andrology 2013, 1, 749–757. [Google Scholar] [CrossRef]
- Shiraishi, K.; Oka, S.; Matsuyama, H. Testicular Testosterone and Estradiol Concentrations and Aromatase Expression in Men with Nonobstructive Azoospermia. J. Clin. Endocrinol. Metab. 2021, 106, e1803–e1815. [Google Scholar] [CrossRef]
- Del Giudice, F.; Busetto, G.M.; De Berardinis, E.; Sperduti, I.; Ferro, M.; Maggi, M.; Gross, M.S.; Sciarra, A.; Eisenberg, M.L. A systematic review and meta-analysis of clinical trials implementing aromatase inhibitors to treat male infertility. Asian J. Androl. 2020, 22, 360–367. [Google Scholar] [CrossRef]
- Shah, T.; Nyirenda, T.; Shin, D. Efficacy of anastrozole in the treatment of hypogonadal, subfertile men with body mass index ≥25 kg/m2. Transl. Androl. Urol. 2021, 10, 1222–1228. [Google Scholar] [CrossRef]
- Sidorkiewicz, I.; Zareba, K.; Wolczynski, S.; Czerniecki, J. Endocrine-disrupting chemicals-Mechanisms of action on male reproductive system. Toxicol. Ind. Health 2017, 33, 601–609. [Google Scholar] [CrossRef]
- Agarwal, A.; Allamaneni, S.S.; Nallella, K.P.; George, A.T.; Mascha, E. Correlation of reactive oxygen species levels with the fertilization rate after in vitro fertilization: A qualified meta-analysis. Fertil. Steril. 2005, 84, 228–231. [Google Scholar] [CrossRef]
- de Ligny, W.; Smits, R.M.; Mackenzie-Proctor, R.; Jordan, V.; Fleischer, K.; de Bruin, J.P.; Showell, M.G. Antioxidants for male subfertility. Cochrane Database Syst. Rev. 2022, 5, CD007411. [Google Scholar] [CrossRef]
- Kaltsas, A. Oxidative Stress and Male Infertility: The Protective Role of Antioxidants. Medicina 2023, 59, 1769. [Google Scholar] [CrossRef]
- Showell, M.G.; Mackenzie-Proctor, R.; Brown, J.; Yazdani, A.; Stankiewicz, M.T.; Hart, R.J. Antioxidants for male subfertility. Cochrane Database Syst. Rev. 2014, CD007411. [Google Scholar] [CrossRef]
- Smits, R.M.; Mackenzie-Proctor, R.; Yazdani, A.; Stankiewicz, M.T.; Jordan, V.; Showell, M.G. Antioxidants for male subfertility. Cochrane Database Syst. Rev. 2019, 3, CD007411. [Google Scholar] [CrossRef]
- Humaidan, P.; Haahr, T.; Povlsen, B.B.; Kofod, L.; Laursen, R.J.; Alsbjerg, B.; Elbaek, H.O.; Esteves, S.C. The combined effect of lifestyle intervention and antioxidant therapy on sperm DNA fragmentation and seminal oxidative stress in IVF patients: A pilot study. Int. Braz. J. Urol. 2022, 48, 131–156. [Google Scholar] [CrossRef]
- Steiner, A.Z.; Hansen, K.R.; Barnhart, K.T.; Cedars, M.I.; Legro, R.S.; Diamond, M.P.; Krawetz, S.A.; Usadi, R.; Baker, V.L.; Coward, R.M.; et al. The effect of antioxidants on male factor infertility: The Males, Antioxidants, and Infertility (MOXI) randomized clinical trial. Fertil. Steril. 2020, 113, 552–560. [Google Scholar] [CrossRef]
- Knudtson, J.F.; Sun, F.; Coward, R.M.; Hansen, K.R.; Barnhart, K.T.; Smith, J.; Legro, R.S.; Diamond, M.P.; Krawetz, S.A.; Zhang, H.; et al. The relationship of plasma antioxidant levels to semen parameters: The Males, Antioxidants, and Infertility (MOXI) randomized clinical trial. J. Assist. Reprod. Genet. 2021, 38, 3005–3013. [Google Scholar] [CrossRef]
- Dimitriadis, F.; Tsounapi, P.; Zachariou, A.; Kaltsas, A.; Sokolakis, I.; Hatzichristodoulou, G.; Symeonidis, E.N.; Kotsiris, D.; Gabales, M.R.; Vlachopoulou, E.; et al. Therapeutic Effects of Micronutrient Supplements on Sperm Parameters: Fact or Fiction? Curr. Pharm. Des. 2021, 27, 2757–2769. [Google Scholar] [CrossRef]
- Avila, C.; Vinay, J.I.; Arese, M.; Saso, L.; Rodrigo, R. Antioxidant Intervention against Male Infertility: Time to Design Novel Strategies. Biomedicines 2022, 10, 3058. [Google Scholar] [CrossRef]
- Dimitriadis, F.; Symeonidis, E.N.; Tsounapi, P.; Kaltsas, A.; Hatzichristodoulou, G.; Sokolakis, I.; Zachariou, A.; Takenaka, A.; Sofikitis, N. Administration of Antioxidants in Infertile Male: When it may have a Detrimental Effect? Curr. Pharm. Des. 2021, 27, 2796–2801. [Google Scholar] [CrossRef]
- Symeonidis, E.N.; Evgeni, E.; Palapelas, V.; Koumasi, D.; Pyrgidis, N.; Sokolakis, I.; Hatzichristodoulou, G.; Tsiampali, C.; Mykoniatis, I.; Zachariou, A.; et al. Redox Balance in Male Infertility: Excellence through Moderation-“Muepsilontaurhoomicronnu ἄrhoiotasigmatauomicronnu”. Antioxidants 2021, 10, 1534. [Google Scholar] [CrossRef]
- Alahmar, A.T.; Naemi, R. Predictors of pregnancy and time to pregnancy in infertile men with idiopathic oligoasthenospermia pre- and post-coenzyme Q10 therapy. Andrologia 2022, 54, e14385. [Google Scholar] [CrossRef]
- Alahmar, A.T.; Sengupta, P.; Dutta, S.; Calogero, A.E. Coenzyme Q10, oxidative stress markers, and sperm DNA damage in men with idiopathic oligoasthenoteratospermia. Clin. Exp. Reprod. Med. 2021, 48, 150–155. [Google Scholar] [CrossRef]
- Khaw, S.C.; Wong, Z.Z.; Anderson, R.; Martins da Silva, S. l-carnitine and l-acetylcarnitine supplementation for idiopathic male infertility. Reprod. Fertil. 2020, 1, 67–81. [Google Scholar] [CrossRef]
- Zhou, Z.; Cui, Y.; Zhang, X.; Zhang, Y. The role of N-acetyl-cysteine (NAC) orally daily on the sperm parameters and serum hormones in idiopathic infertile men: A systematic review and meta-analysis of randomised controlled trials. Andrologia 2021, 53, e13953. [Google Scholar] [CrossRef]
- Szymanski, M.; Wandtke, T.; Wasilow, K.; Andryszczyk, M.; Janicki, R.; Domaracki, P. Comparison of 3- and 6-Month Outcomes of Combined Oral L-Carnitine Fumarate and Acetyl-L-Carnitine Therapy, Included in an Antioxidant Formulation, in Patients with Idiopathic Infertility. Am. J. Men’s Health 2021, 15, 15579883211036790. [Google Scholar] [CrossRef]
- Nazari, L.; Salehpour, S.; Hosseini, S.; Allameh, F.; Jahanmardi, F.; Azizi, E.; Ghodssi-Ghassemabadi, R.; Hashemi, T. Effect of antioxidant supplementation containing L-carnitine on semen parameters: A prospective interventional study. JBRA Assist. Reprod. 2021, 25, 76–80. [Google Scholar] [CrossRef]
- Wei, G.; Zhou, Z.; Cui, Y.; Huang, Y.; Wan, Z.; Che, X.; Chai, Y.; Zhang, Y. A Meta-Analysis of the Efficacy of L-Carnitine/L-Acetyl-Carnitine or N-Acetyl-Cysteine in Men with Idiopathic Asthenozoospermia. Am. J. Men’s Health 2021, 15, 15579883211011371. [Google Scholar] [CrossRef]
- Maghsoumi-Norouzabad, L.; Zare Javid, A.; Mansoori, A.; Dadfar, M.; Serajian, A. The effects of Vitamin D3 supplementation on Spermatogram and endocrine factors in asthenozoospermia infertile men: A randomized, triple blind, placebo-controlled clinical trial. Reprod. Biol. Endocrinol. 2021, 19, 102. [Google Scholar] [CrossRef]
- Omu, A.E.; al-Qattan, F.; Abdul Hamada, B. Effect of low dose continuous corticosteroid therapy in men with antisperm antibodies on spermatozoal quality and conception rate. Eur. J. Obstet. Gynecol. Reprod. Biol. 1996, 69, 129–134. [Google Scholar] [CrossRef]
- Vickram, A.S.; Dhama, K.; Chakraborty, S.; Samad, H.A.; Latheef, S.K.; Sharun, K.; Khurana, S.K.; Tiwari, R.; Bhatt, P.; Chaicumpa, W. Role of Antisperm Antibodies in Infertility, Pregnancy, and Potential forContraceptive and Antifertility Vaccine Designs: Research Progress and Pioneering Vision. Vaccines 2019, 7, 116. [Google Scholar] [CrossRef]
- Silva, A.F.; Ramalho-Santos, J.; Amaral, S. The impact of antisperm antibodies on human male reproductive function: An update. Reproduction 2021, 162, R55–R71. [Google Scholar] [CrossRef]
- Taiyeb, A.M.; Ridha-Albarzanchi, M.T.; Taiyeb, S.M.; Kanan, Z.A.; Alatrakchi, S.K.; Kjelland, M.E.; Muhsen-Alanssari, S.A. Improvement in pregnancy outcomes in couples with immunologically male infertility undergoing prednisolone treatment and conventional in vitro fertilization preceded by sperm penetration assay: A randomized controlled trial. Endocrine 2017, 58, 448–457. [Google Scholar] [CrossRef]
- Practice Committee of the American Society for Reproductive Medicine. The role of immunotherapy in in vitro fertilization: A guideline. Fertil. Steril. 2018, 110, 387–400. [Google Scholar] [CrossRef]
- Ajayi, A.F.; Akhigbe, R.E. The physiology of male reproduction: Impact of drugs and their abuse on male fertility. Andrologia 2020, 52, e13672. [Google Scholar] [CrossRef]
- Haidl, G.; Haidl, F.; Allam, J.P.; Schuppe, H.C. Therapeutic options in male genital tract inflammation. Andrologia 2019, 51, e13207. [Google Scholar] [CrossRef]
- Kaltsas, A.; Dimitriadis, F.; Zachariou, D.; Zikopoulos, A.; Symeonidis, E.N.; Markou, E.; Tien, D.M.B.; Takenaka, A.; Sofikitis, N.; Zachariou, A. From Diagnosis to Treatment: Comprehensive Care by Reproductive Urologists in Assisted Reproductive Technology. Medicina 2023, 59, 1835. [Google Scholar] [CrossRef]
- Sofikitis, N.; Kaltsas, A.; Dimitriadis, F.; Rassweiler, J.; Grivas, N.; Zachariou, A.; Kaponis, A.; Tsounapi, P.; Paterakis, N.; Karagiannis, A.; et al. The Effect of PDE5 Inhibitors on the Male Reproductive Tract. Curr. Pharm. Des. 2021, 27, 2697–2713. [Google Scholar] [CrossRef]
- Dimitriadis, F.; Kaltsas, A.; Zachariou, A.; Mamoulakis, C.; Tsiampali, C.; Giannakis, I.; Paschopoulos, M.; Papatsoris, A.; Loutradis, D.; Tsounapi, P.; et al. PDE5 inhibitors and male reproduction: Is there a place for PDE5 inhibitors in infertility clinics or andrology laboratories? Int. J. Urol. 2022, 29, 1405–1418. [Google Scholar] [CrossRef]
- Dong, L.; Zhang, X.; Yan, X.; Shen, Y.; Li, Y.; Yu, X. Effect of Phosphodiesterase-5 Inhibitors on the Treatment of Male Infertility: A Systematic Review and Meta-Analysis. World J. Men’s Health 2021, 39, 776–796. [Google Scholar] [CrossRef]
- Tournaye, H.; Van Steirteghem, A.C.; Devroey, P. Pentoxifylline in idiopathic male-factor infertility: A review of its therapeutic efficacy after oral administration. Hum. Reprod. 1994, 9, 996–1000. [Google Scholar] [CrossRef]
- Lu, Y.; Su, H.; Zhang, J.; Wang, Y.; Li, H. Treatment of Poor Sperm Quality and Erectile Dysfunction with Oral Pentoxifylline: A Systematic Review. Front. Pharmacol. 2021, 12, 789787. [Google Scholar] [CrossRef]
- Dutta, S.; Sengupta, P. The Role of Nitric Oxide on Male and Female Reproduction. Malays. J. Med. Sci. 2022, 29, 18–30. [Google Scholar] [CrossRef]
- Kaltsas, A.; Zikopoulos, A.; Dimitriadis, F.; Sheshi, D.; Politis, M.; Moustakli, E.; Symeonidis, E.N.; Chrisofos, M.; Sofikitis, N.; Zachariou, A. Oxidative Stress and Erectile Dysfunction: Pathophysiology, Impacts, and Potential Treatments. Curr. Issues Mol. Biol. 2024, 46, 8807–8834. [Google Scholar] [CrossRef]
- Srivastava, S.; Desai, P.; Coutinho, E.; Govil, G. Mechanism of action of L-arginine on the vitality of spermatozoa is primarily through increased biosynthesis of nitric oxide. Biol. Reprod. 2006, 74, 954–958. [Google Scholar] [CrossRef]
- Webster, J.; Piscitelli, G.; Polli, A.; D’Alberton, A.; Falsetti, L.; Ferrari, C.; Fioretti, P.; Giordano, G.; L’Hermite, M.; Ciccarelli, E.; et al. Dose-dependent suppression of serum prolactin by cabergoline in hyperprolactinaemia: A placebo controlled, double blind, multicentre study. European Multicentre Cabergoline Dose-finding Study Group. Clin. Endocrinol. 1992, 37, 534–541. [Google Scholar] [CrossRef]
- Verhelst, J.; Abs, R.; Maiter, D.; van den Bruel, A.; Vandeweghe, M.; Velkeniers, B.; Mockel, J.; Lamberigts, G.; Petrossians, P.; Coremans, P.; et al. Cabergoline in the treatment of hyperprolactinemia: A study in 455 patients. J. Clin. Endocrinol. Metab. 1999, 84, 2518–2522. [Google Scholar] [CrossRef]
- AinMelk, Y.; Belisle, S.; Kandalaft, N.; McClure, D.; Tetreault, L.; Elhilali, M. Bromocriptine therapy in oligozoospermic infertile men. Arch. Androl. 1982, 8, 135–141. [Google Scholar] [CrossRef]
- Schill, W.B. Treatment of idiopathic oligozoospermia by kallikrein: Results of a double-blind study. Arch. Androl. 1979, 2, 163–170. [Google Scholar] [CrossRef]
- Sofikitis, N.; Miyagawa, I.; Toda, T.; Harada, T.; Mio, Y.; Terakawa, N. The effect of kallikrein on human sperm membrane function. Tohoku J. Exp. Med. 1991, 164, 23–28. [Google Scholar] [CrossRef]
- Giovenco, P.; Amodei, M.; Barbieri, C.; Fasani, R.; Carosi, M.; Dondero, F. Effects of kallikrein on the male reproductive system and its use in the treatment of idiopathic oligozoospermia with impaired motility. Andrologia 1987, 19, 238–241. [Google Scholar] [CrossRef]
- Barkay, J.; Harpaz-Kerpel, S.; Ben-Ezra, S.; Gordon, S.; Zuckerman, H. The prostaglandin inhibitor effect of antiinflammatory drugs in the therapy of male infertility. Fertil. Steril. 1984, 42, 406–411. [Google Scholar] [CrossRef]
- Yamamoto, M.; Hibi, H.; Miyake, K. Effects of alpha-blocker on daily testicular sperm production and sperm concentration, motility, intraluminal pressure and fluid movement in the rat epididymis. Tohoku J. Exp. Med. 1995, 177, 25–37. [Google Scholar] [CrossRef]
- Hibi, H.; Yamamoto, M.; Miyake, K. Effects of alpha-blocker on sperm concentration, motility, intraluminal pressure and fluid movement in the rat cauda epididymis. J. Urol. 1995, 154, 606–610. [Google Scholar] [CrossRef]
- Gregoriou, O.; Vitoratos, N.; Papadias, C.; Gargaropoulos, A.; Konidaris, S.; Giannopoulos, V.; Chryssicopoulos, A. Treatment of idiopathic oligozoospermia with an alpha-blocker: A placebo-controlled double-blind trial. Int. J. Fertil. Womens Med. 1997, 42, 301–305. [Google Scholar]
- Iacono, F.; Prezioso, D.; Ruffo, A.; Dilauro, G.; Illiano, E.; Romeo, G.; Romis, L. Treating Idiopathic Male Infertility with a Combination of TamoxifenCitrate and a Natural Compost with Antioxidant and Androgen-MimeticAction. J. Steroids Horm. Sci. 2013, 4, 1–6. [Google Scholar]
- Comhaire, F.; Garem, Y.F.E.; Mahmoud, A.M.A.; Eertmans, F.; Schoonjans, F. Combined conventional/antioxidant “Astaxanthin” treatment for male infertility: A double blind, randomized trial. Asian J. Androl. 2005, 7, 257–262. [Google Scholar] [CrossRef]
- Moradi, M.; Moradi, A.; Alemi, M.; Ahmadnia, H.; Abdi, H.; Ahmadi, A.; Bazargan-Hejazi, S. Safety and efficacy of clomiphene citrate and L-carnitine in idiopathic male infertility: A comparative study. Urol. J. 2010, 7, 188–193. [Google Scholar]
- Ghanem, H.; Shaeer, O.; El-Segini, A. Combination clomiphene citrate and antioxidant therapy for idiopathic male infertility: A randomized controlled trial. Fertil. Steril. 2010, 93, 2232–2235. [Google Scholar] [CrossRef]
- Paradiso Galatioto, G.; Gravina, G.L.; Angelozzi, G.; Sacchetti, A.; Innominato, P.F.; Pace, G.; Ranieri, G.; Vicentini, C. May antioxidant therapy improve sperm parameters of men with persistent oligospermia after retrograde embolization for varicocele? World J. Urol. 2008, 26, 97–102. [Google Scholar] [CrossRef]
- Adamopoulos, D.A.; Pappa, A.; Billa, E.; Nicopoulou, S.C.; Koukkou, E.; Michopoulos, J. Effectiveness of combined tamoxifen citrate and testosterone undecanoate treatment in men with idiopathic oligozoospermia. Fertil. Steril. 2003, 80, 914–920. [Google Scholar] [CrossRef]
- Tadros, N.N.; Sabanegh, E.S. Empiric medical therapy with hormonal agents for idiopathic male infertility. Indian. J. Urol. 2017, 33, 194–198. [Google Scholar] [CrossRef]
- Crosnoe, L.E.; Grober, E.; Ohl, D.; Kim, E.D. Exogenous testosterone: A preventable cause of male infertility. Transl. Androl. Urol. 2013, 2, 106–113. [Google Scholar] [CrossRef]
- Fusco, F.; Verze, P.; Capece, M.; Napolitano, L. Suppression of Spermatogenesis by Exogenous Testosterone. Curr. Pharm. Des. 2021, 27, 2750–2753. [Google Scholar] [CrossRef]
- An, Q.; Zhang, K.; Fu, L.; Guo, Y.; Zhang, C.; Ge, Z.; Ma, J.; Gu, Y.; Zuo, L. The impact of exogenous testosterone supplementation on spermatogenesis in a rat model of oligoasthenospermia. Int. J. Clin. Exp. Pathol. 2020, 13, 1287–1299. [Google Scholar]
- Drobnis, E.Z.; Nangia, A.K. Exogenous Androgens and Male Reproduction. Adv. Exp. Med. Biol. 2017, 1034, 25–28. [Google Scholar] [CrossRef]
- Ko, E.Y.; Siddiqi, K.; Brannigan, R.E.; Sabanegh, E.S., Jr. Empirical medical therapy for idiopathic male infertility: A survey of the American Urological Association. J. Urol. 2012, 187, 973–978. [Google Scholar] [CrossRef]
- Eleswarapu, S.V.; Naelitz, B.D.; Jiang, T.; Muñoz, C.; Parekh, N.; Andino, J.; Sigalos, J.T.; Modiri, N.; Mills, J.N.; Vij, S.C.; et al. (181) Combination Clomiphene Citrate and Anastrozole Therapy Iimproves Semen Parameters in a Multi-institutional Cohort of Men with Idiopathic Infertility. J. Sex. Med. 2023, 20, qdad060.174. [Google Scholar] [CrossRef]
- Ahmadi-Asrbadr, Y.; Hemmati-Ghavshough, M.; Khanzadeh, N.; Ansari, F.; Mohammad-Rahimi, M. Comparison of the effect of combined therapy of HCG ampule and letrozole tablet with each method separately on the spermogram parameters in the obese men with idiopathic infertility: A clinical trial. Am. J. Clin. Exp. Urol. 2022, 10, 258–265. [Google Scholar] [PubMed]
- Agarwal, A.; Parekh, N.; Panner Selvam, M.K.; Henkel, R.; Shah, R.; Homa, S.T.; Ramasamy, R.; Ko, E.; Tremellen, K.; Esteves, S.; et al. Male Oxidative Stress Infertility (MOSI): Proposed Terminology and Clinical Practice Guidelines for Management of Idiopathic Male Infertility. World J. Men’s Health 2019, 37, 296–312. [Google Scholar] [CrossRef] [PubMed]
- Monakova, A.; Sagaradze, G.; Basalova, N.; Popov, V.; Balabanyan, V.; Efimenko, A. Novel Potency Assay for MSC Secretome-Based Treatment of Idiopathic Male Infertility Employed Leydig Cells and Revealed Vascular Endothelial Growth Factor as a Promising Potency Marker. Int. J. Mol. Sci. 2022, 23, 9414. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.P.; Jenkins, T.G.; Aston, K.I.; Guo, J.; Pastuszak, A.W.; Hanson, H.A.; Hotaling, J.M. Harnessing the full potential of reproductive genetics and epigenetics for male infertility in the era of “big data”. Fertil. Steril. 2020, 113, 478–488. [Google Scholar] [CrossRef] [PubMed]
- Kaltsas, A.; Zachariou, A.; Markou, E.; Dimitriadis, F.; Sofikitis, N.; Pournaras, S. Microbial Dysbiosis and Male Infertility: Understanding the Impact and Exploring Therapeutic Interventions. J. Pers. Med. 2023, 13, 1491. [Google Scholar] [CrossRef]
- Jo, J.; Lee, S.H.; Lee, J.M.; Jerng, U.M. Semen Quality Improvement in a Man with Idiopathic Infertility Treated with Traditional Korean Medicine: A Case Report. Explore 2015, 11, 320–323. [Google Scholar] [CrossRef]
- Easley, C.A.; Simerly, C.R.; Schatten, G. Direct Differentiation of Human Pluripotent Stem Cells into Advanced Spermatogenic Cells: In Search of an In Vitro System to Model Male Factor Infertility. In New Frontiers of Multidisciplinary Research in STEAM-H (Science, Technology, Engineering, Agriculture, Mathematics, and Health); Springer: Cham, Switzerland, 2014; pp. 279–293. [Google Scholar]
- Pajai, S.; Potdar, J.; Gopal, U.; Banait, T. A Review on the Use of Letrozole in Female and Male Infertility. Cureus 2022, 14, e31291. [Google Scholar] [CrossRef]
Medical Treatment | Mechanism of Action | Efficacy | Level of Evidence | References |
---|---|---|---|---|
Gonadotropins | Mimic the action of LH and FSH to stimulate Leydig and Sertoli cells in the testes | ↑ Testosterone ↑ Spermatogenesis ↑ Sperm concentration ↑ Progressive motility | High | [30,31,32,33,34,35,36,37,38,39,40,41] |
SERMs | Block estrogen’s negative feedback in the hypothalamus and pituitary gland, increasing the release of gonadotropins (LH and FSH) | ↑ Hormone levels ↑ Sperm parameters ↑ Pregnancy rates | High | [42,43,44,45,46,47,48] |
Aromatase Inhibitors | Block conversion of testosterone to estradiol by inhibiting the enzyme aromatase | ↑ Testosterone ↑ Sperm parameters ↑ Pregnancy rates | Moderate to High | [49,50,51] |
PDE5 Inhibitors | Enhance Leydig and Sertoli cell secretory activity by inhibiting PDE5 | ↑ Sperm concentration ↑ Motility ↑ Morphology | Moderate | [81,82,83] |
Antioxidants | Reduce oxidative stress by neutralizing ROS | ↑ Sperm parameters, mixed evidence ↑ Pregnancy rates ↑ Live births | Moderate to Low | [52,54,55,56,57,58,59,60,67,68,69,70,71] |
Dopamine Agonists | Normalize prolactin levels by stimulating dopamine receptors in the pituitary gland | Normalized Prolactin ↑ Fertility | Moderate | [89,90,91] |
Kallikrein | Cleave kininogen to generate kinins, which are involved in the regulation of sperm motility | ↑ Sperm motility ↑ Pregnancy rates | Low | [92,93,94] |
Indomethacin | Block prostaglandin synthesis by inhibiting the cyclooxygenase (COX) enzyme | ↑ FSH, ↑ LH, ↑ Testosterone, ↑ Motility | Low | [95] |
Low-Dose Corticosteroids | Reduce chronic inflammatory infiltrates and immune response | ↑ Sperm quality | Low | [73] |
Alpha-Blockers | Increase sperm concentration by relaxing smooth muscle in the reproductive tract | ↑ Sperm concentration | Low | [96,97,98] |
Nitric Oxide Donors | Regulate steroidogenesis and gametogenesis by enhancing nitric oxide availability | ↑ Sperm count ↑ Motility | Low | [86,88] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaltsas, A.; Zachariou, A.; Dimitriadis, F.; Chrisofos, M.; Sofikitis, N. Empirical Treatments for Male Infertility: A Focus on Lifestyle Modifications and Medicines. Diseases 2024, 12, 209. https://doi.org/10.3390/diseases12090209
Kaltsas A, Zachariou A, Dimitriadis F, Chrisofos M, Sofikitis N. Empirical Treatments for Male Infertility: A Focus on Lifestyle Modifications and Medicines. Diseases. 2024; 12(9):209. https://doi.org/10.3390/diseases12090209
Chicago/Turabian StyleKaltsas, Aris, Athanasios Zachariou, Fotios Dimitriadis, Michael Chrisofos, and Nikolaos Sofikitis. 2024. "Empirical Treatments for Male Infertility: A Focus on Lifestyle Modifications and Medicines" Diseases 12, no. 9: 209. https://doi.org/10.3390/diseases12090209
APA StyleKaltsas, A., Zachariou, A., Dimitriadis, F., Chrisofos, M., & Sofikitis, N. (2024). Empirical Treatments for Male Infertility: A Focus on Lifestyle Modifications and Medicines. Diseases, 12(9), 209. https://doi.org/10.3390/diseases12090209