Tuberculosis Diagnosis: Current, Ongoing, and Future Approaches
Abstract
:1. Introduction
2. Traditional Diagnostic Methods
2.1. Sputum Smear Microscopy
2.2. Chest Radiography
3. Culture-Based Diagnostic
4. Molecular Diagnostic Techniques
4.1. Molecular WHO-Recommended Rapid Diagnostic Tests
4.1.1. Nucleic-Acid Amplification Tests
4.1.2. Line Probe Assays (LPAs)
4.2. Sequencing
4.3. MALDI-TOF MS
4.4. Biosensors
5. Immunological Approaches
5.1. Interferon-Gamma Release Assays (IGRAs)
- T-SPOT®.TB (T-Spot; Oxford Immunotec Ltd., Oxford, UK): uses the enzyme-linked immunospot (ELISPOT) method to count M. tuberculosis-sensitized T cells [185];
- QuantiFERON®-TB Gold Plus (QFT-Plus; Qiagen, Hilden, Germany): a fourth-generation assay that measures the cell-mediated immune response to two specific M. tuberculosis antigens—Early Secreted Antigenic Target 6 (ESAT-6) and Culture Filtrate Protein 10 (CFP-10)—using an ELISA-based approach [186];
- WANTAI TB-IGRA (Beijing Wantai Biological Pharmacy Enterprise Co Ltd., Beijing, China): an ELISA-based IGRA test similar to QFT-Plus, using a recombinant fusion protein of CFP-10 and ESAT-6 antigens [187].
5.2. Tuberculin Skin Test (TST)
5.3. Mycobacterium Tuberculosis Antigen-Based Skin Tests (TBSTs)
6. Ongoing Research
- Cepheid MTB-HR cartridge: This fingerstick blood test identifies a three-gene transcriptomic signature, achieving a sensitivity of 59.8% in distinguishing TB from non-TB cases. Combined with other methods, it identified 71.2% of confirmed TB cases [202].
- Immuno-affinity LC-MS (ILM) assay: This novel approach quantifies peptides from HIV-1 and M. tuberculosis proteins, achieving high sensitivity and specificity for both infections [203]. Additionally, it can differentiate treatment responders from non-responders, providing valuable insights for integrated TB and HIV management [203].
- CAPTURE-XT technology: This “lab-on-a-chip” platform uses dielectrophoresis to isolate M. tuberculosis from sputum, enabling efficient bacterial purification for subsequent molecular confirmation. It demonstrated high concordance with culture diagnosis, highlighting its potential as a robust sample preparation tool [204].
- Electronic nose (EN): Ketchanji Mougang et al. [205] conducted a study in Douala, Cameroon, assessing an EN for diagnosing PTB in a clinical setting. The EN utilizes eleven quartz microbalance sensors modified with metalloporphyrins and corroles to detect volatile organic compounds (VOCs) present in exhaled breath samples collected using a specialized breath sampler. Breath samples were segregated into alveolar and non-alveolar fractions, with analysis focusing exclusively on the alveolar portion to minimize external contaminants. The sensors detect changes in frequency resulting from interactions with VOCs, which exhibit unique patterns associated with TB. The EN demonstrated an accuracy of 88.0%, with a sensitivity of 90.8% and specificity of 85.7%, effectively distinguishing between PTB patients and healthy controls. Notably, the sensitivity of the EN was comparable to TB-LAMP and CXR, surpassing SSM.
Tests Undergoing WHO Policy Review
7. Final Remarks
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gagneux, S. Ecology and evolution of Mycobacterium tuberculosis. Nat. Rev. Microbiol. 2018, 16, 202–213. [Google Scholar] [CrossRef] [PubMed]
- Pai, M.; Behr, M.A.; Dowdy, D.; Dheda, K.; Divangahi, M.; Boehme, C.C.; Ginsberg, A.; Swaminathan, S.; Spigelman, M.; Getahun, H.; et al. Tuberculosis. Nat. Rev. Dis. Primers 2016, 2, 16076. [Google Scholar] [CrossRef]
- World Health Organization. Global Tuberculosis Report 2023. 2023. Available online: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2023 (accessed on 23 June 2024).
- Silva, S.; Arinaminpathy, N.; Atun, R.; Goosby, E.; Reid, M. Economic impact of tuberculosis mortality in 120 countries and the cost of not achieving the Sustainable Development Goals tuberculosis targets: A full-income analysis. Lancet Glob. Health 2021, 9, e1372–e1379. [Google Scholar] [CrossRef] [PubMed]
- Bhalla, A.S.; Goyal, A.; Guleria, R.; Gupta, A.K. Chest tuberculosis: Radiological review and imaging recommendations. Indian J. Radiol. Imaging 2015, 25, 213–225. [Google Scholar] [CrossRef]
- Natarajan, A.; Beena, P.M.; Devnikar, A.V.; Mali, S. A systemic review on tuberculosis. Indian J. Tuberc. 2020, 67, 295–311. [Google Scholar] [CrossRef]
- Sharma, S.K.; Mohan, A.; Kohli, M. Extrapulmonary tuberculosis. Expert Rev. Respir. Med. 2021, 15, 931–948. [Google Scholar] [CrossRef] [PubMed]
- Htet, K.K.K.; Chongsuvivatwong, V.; Aung, S.T. Sensitivity and specificity of tuberculosis signs and symptoms screening and adjunct role of social pathology characteristics in predicting bacteriologically confirmed tuberculosis in Myanmar. Trop. Med. Health 2021, 49, 3. [Google Scholar] [CrossRef]
- Knechel, N.A. Tuberculosis: Pathophysiology, clinical features, and diagnosis. Crit. Care Nurse 2009, 29, 34–44. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines on the Management of Latent Tuberculosis Infection. 2015. Available online: https://www.who.int/publications/i/item/9789241548908 (accessed on 23 June 2024).
- Kiazyk, S.; Ball, T.B. Latent tuberculosis infection: An overview. Can. Commun. Dis. Rep. 2017, 43, 62–66. [Google Scholar] [CrossRef]
- Turner, R.D.; Bothamley, G.H. Cough and the transmission of tuberculosis. J. Infect. Dis. 2015, 211, 1367–1372. [Google Scholar] [CrossRef]
- Turner, R.D.; Chiu, C.; Churchyard, G.J.; Esmail, H.; Lewinsohn, D.M.; Gandhi, N.R.; Fennelly, K.P. Tuberculosis Infectiousness and Host Susceptibility. J. Infect. Dis. 2017, 216, S636–S643. [Google Scholar] [CrossRef] [PubMed]
- Imtiaz, S.; Shield, K.D.; Roerecke, M.; Samokhvalov, A.V.; Lönnroth, K.; Rehm, J. Alcohol consumption as a risk factor for tuberculosis: Meta-analyses and burden of disease. Eur. Respir. J. 2017, 50, 1700216. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, N.; Bhattarai, R.B.; Basnet, R.; Joshi, L.R.; Tinkari, B.S.; Thapa, A.; Joshi, B. Prevalence and associated risk factors for tuberculosis among people living with HIV in Nepal. PLoS ONE 2022, 17, e0262720. [Google Scholar] [CrossRef] [PubMed]
- Gelaw, Y.; Getaneh, Z.; Melku, M. Anemia as a risk factor for tuberculosis: A systematic review and meta-analysis. Environ. Health Prev. Med. 2021, 26, 13. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Q.; Song, R.; Zhang, W.; Wang, T.; Lian, Z.; Sun, X.; Liu, Y. The association of glycemic level and prevalence of tuberculosis: A meta-analysis. BMC Endocr. Disord. 2021, 16, 123. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, R.; Akugizibwe, P.; Siegfried, N.; Rees, D. The association between silica exposure, silicosis and tuberculosis: A systematic review and meta-analysis. BMC Public Health 2021, 21, 953. [Google Scholar] [CrossRef]
- Obore, N.; Kawuki, J.; Guan, J.; Papabathini, S.S.; Wang, L. Association between indoor air pollution, tobacco smoke and tuberculosis: An updated systematic review and meta-analysis. Public Health 2020, 187, 24–35. [Google Scholar] [CrossRef]
- Dias, M.; Gaio, R.; Sousa, P.; Abranches, M.; Gomes, M.; Oliveira, O.; Correia-Neves, M.; Ferreira, E.; Duarte, R. Tuberculosis among the homeless: Should we change the strategy? Int. J. Tuberc. Lung Dis. 2017, 21, 327–332. [Google Scholar] [CrossRef]
- Velen, K.; Charalambous, S. Tuberculosis in prisons: An unintended sentence? Lancet Public Health 2021, 6, e263–e264. [Google Scholar] [CrossRef]
- Cronan, M.R. In the Thick of It: Formation of the Tuberculous Granuloma and Its Effects on Host and Therapeutic Responses. Front. Immunol. 2022, 13, 820134. [Google Scholar] [CrossRef]
- Alsayed, S.S.; Gunosewoyo, H. Tuberculosis: Pathogenesis, current treatment regimens and new drug targets. Int. J. Mol. Sci. 2023, 24, 5202. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Chen, Y.; Chen, J.; Xu, K.; Xu, F.; Shi, J. The relationship between previous pulmonary tuberculosis and risk of lung cancer in the future. Infect. Agents Cancer 2022, 17, 20. [Google Scholar] [CrossRef]
- Hwang, S.Y.; Kim, J.Y.; Lee, H.S.; Lee, S.; Kim, D.; Kim, S.; Hyun, J.H.; Shin, J.I.; Lee, K.H.; Han, S.H.; et al. Pulmonary Tuberculosis and Risk of Lung Cancer: A Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 765. [Google Scholar] [CrossRef] [PubMed]
- Ho, L.J.; Yang, H.Y.; Chung, C.H.; Chang, W.C.; Yang, S.S.; Sun, C.A.; Chien, W.C.; Su, R.Y. Increased risk of secondary lung cancer in patients with tuberculosis: A nationwide, population-based cohort study. PLoS ONE 2021, 16, e0250531. [Google Scholar] [CrossRef]
- MacGregor-Fairlie, M.; Wilkinson, S.; Besra, G.S.; Goldberg Oppenheimer, P. Tuberculosis diagnostics: Overcoming ancient challenges with modern solutions. Emerg. Top. Life Sci. 2020, 4, 423–436. [Google Scholar] [CrossRef]
- Ahmed, I.; Tiberi, S.; Farooqi, J.; Jabeen, K.; Yeboah-Manu, D.; Migliori, G.B.; Hasan, R. Non-tuberculous mycobacterial infections-A neglected and emerging problem. Int. J. Infect. Dis. 2020, 92, S46–S50. [Google Scholar] [CrossRef] [PubMed]
- Ying, C.; Zhang, L.; Jin, X.; Zhu, D.; Wu, W. Advances in diagnosis and treatment of non-tuberculous mycobacterial lung disease. Diagn. Microbiol. Infect. Dis. 2024, 109, 116254. [Google Scholar] [CrossRef]
- Chindam, A.; Vengaldas, S.; Srigiri, V.R.; Syed, U.; Kilaru, H.; Chenimilla, N.P.; Kilaru, S.C.; Patil, E. Challenges of diagnosing and treating non-tuberculous mycobacterial pulmonary disease [NTM-PD]: A case series. J. Clin. Tuberc. Other Mycobact. Dis. 2021, 25, 100271. [Google Scholar] [CrossRef]
- Zhu, L.; Jiang, G.; Wang, S.; Wang, C.; Li, Q.; Yu, H.; Zhou, Y.; Zhao, B.; Huang, H.; Xing, W.; et al. Biochip system for rapid and accurate identification of mycobacterial species from isolates and sputum. J. Clin. Microbiol. 2010, 48, 3654–3660. [Google Scholar] [CrossRef]
- Ramos, A.; Carvalho, T.; Ribeiro, M.; Guimarães, J.T. Capilia™ TB-Neo assay: A new tool for rapid distinction between tuberculous and non-tuberculous mycobacteria. Int. J. Tuberc. Lung. Dis. 2016, 20, 753–756. [Google Scholar] [CrossRef]
- Chae, H.; Han, S.J.; Kim, S.Y.; Ki, C.S.; Huh, H.J.; Yong, D.; Koh, W.J.; Shin, S.J. Development of a One-Step Multiplex PCR Assay for Differential Detection of Major Mycobacterium Species. J. Clin. Microbiol. 2017, 55, 2736–2751. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, K.; Garima, K.; Narang, A.; Bhattacharyya, K.; Vishnoi, E.; Singh, R.K.; Chaudhry, A.; Prasad, R.; Bose, M.; Varma-Basil, M. Rv1458c: A new diagnostic marker for identification of Mycobacterium tuberculosis complex in a novel duplex PCR assay. J. Med. Microbiol. 2017, 66, 371–376. [Google Scholar] [CrossRef]
- Singh, S.; Sharma, M.; Modi, M.; Sharma, A.; Singh, R.; Ray, P.; Sharma, K. High-resolution melting curve analysis of heat shock protein 65 for identification of mycobacterial isolates. Int. J. Tuberc. Lung. Dis. 2018, 22, 1511–1513. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Shu, Q.; Zhao, Z.; Fan, J.; Lyon, C.J.; Zelazny, A.M.; Hu, Y. Antigen 85B peptidomic analysis allows species-specific mycobacterial identification. Clin. Proteom. 2018, 15, 1. [Google Scholar] [CrossRef] [PubMed]
- Chuensirikulchai, K.; Laopajon, W.; Phunpae, P.; Apiratmateekul, N.; Surinkaew, S.; Tayapiwatana, C.; Pata, S.; Kasinrerk, W. Sandwich antibody-based biosensor system for identification of Mycobacterium tuberculosis complex and nontuberculous mycobacteria. J. Immunoass. Immunochem. 2019, 40, 590–604. [Google Scholar] [CrossRef] [PubMed]
- Wood, H.N.; Sidders, A.E.; Brumsey, L.E.; Morozkin, E.S.; Gerasimova, Y.V.; Rohde, K.H. Species Typing of Nontuberculous Mycobacteria by Use of Deoxyribozyme Sensors. Clin. Chem. 2019, 65, 333–341. [Google Scholar] [CrossRef]
- Shin, S.; Yoo, I.Y.; Shim, H.J.; Kang, O.K.; Jhun, B.W.; Koh, W.J.; Huh, H.J.; Lee, N.Y. Diagnostic Performance of the GENEDIA MTB/NTM Detection Kit for Detecting Mycobacterium tuberculosis and Nontuberculous Mycobacteria with Sputum Specimens. Ann. Lab. Med. 2020, 40, 169–173. [Google Scholar] [CrossRef]
- Xiao, G.; Zhang, S.; Liang, Z.; Li, G.; Fang, M.; Liu, Y.; Zhang, J.; Ou, M.; He, X.; Zhang, T.; et al. Identification of Mycobacterium abscessus species and subspecies using the Cas12a/sgRNA-based nucleic acid detection platform. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 551–558. [Google Scholar] [CrossRef]
- Li, B.; Zhu, C.; Sun, L.; Dong, H.; Sun, Y.; Cao, S.; Zhen, L.; Qi, Q.; Zhang, Q.; Mo, T.; et al. Performance evaluation and clinical validation of optimized nucleotide MALDI-TOF-MS for mycobacterial identification. Front. Cell. Infect. Microbiol. 2022, 12, 1079184. [Google Scholar] [CrossRef]
- Fukushima, K.; Matsumoto, Y.; Matsuki, T.; Saito, H.; Motooka, D.; Komukai, S.; Fukui, E.; Yamuchi, J.; Nitta, T.; Niitsu, T.; et al. MGIT-seq for the Identification of Nontuberculous Mycobacteria and Drug Resistance: A Prospective Study. J. Clin. Microbiol. 2023, 61, e0162622. [Google Scholar] [CrossRef]
- Uwamino, Y.; Aono, A.; Tomita, Y.; Morimoto, K.; Kawashima, M.; Kamata, H.; Sasaki, Y.; Nagai, H.; Hasegawa, N.; Mitarai, S. Diagnostic Utility of a Mycobacterium Multiplex PCR Detection Panel for Tuberculosis and Nontuberculous Mycobacterial Infections. Microbiol. Spectr. 2023, 11, e0516222. [Google Scholar] [CrossRef]
- Wang, J.; Xu, H.; Wang, X.; Lan, J. Rapid diagnosis of non-tuberculous mycobacterial pulmonary diseases by metagenomic next-generation sequencing in non-referral hospitals. Front. Cell. Infect. Microbiol. 2023, 12, 1083497. [Google Scholar] [CrossRef]
- Wu, T.; Shen, C.; Zhao, Z.; Lyu, M.; Bai, H.; Hu, X.; Zhao, J.; Zhang, R.; Qian, K.; Xu, G.; et al. Integrating Paper-Based Microfluidics and Lateral Flow Strip into Nucleic Acid Amplification Device toward Rapid, Low-Cost, and Visual Diagnosis of Multiple Mycobacteria. Small Methods 2024, 11, e2400095. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; He, Z.; Li, Y.; Xu, X.; Wang, C.; Zeng, J. Improved Conventional and New Approaches in the Diagnosis of Tuberculosis. Front. Microbiol. 2022, 13, 924410. [Google Scholar] [CrossRef]
- Filardo, T.D.; Feng, P.J.; Pratt, R.H.; Price, S.F.; Self, J.L. Tuberculosis—United States, 2021. MMWR Morb. Mortal. Wkly. 2022, 71, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.A.; Leite, A.; Soares, P.; Duarte, R.; Nunes, C. Delayed diagnosis of active pulmonary tuberculosis—Potential risk factors for patient and healthcare delays in Portugal. BMC Public Health 2021, 21, 2178. [Google Scholar] [CrossRef] [PubMed]
- Kraef, C.; Bentzon, A.; Panteleev, A.; Skrahina, A.; Bolokadze, N.; Tetradov, S.; Podlasin, R.; Karpov, I.; Borodulina, E.; Denisova, E.; et al. Delayed diagnosis of tuberculosis in persons living with HIV in Eastern Europe: Associated factors and effect on mortality-a multicentre prospective cohort study. BMC Infect. Dis. 2021, 21, 1038. [Google Scholar] [CrossRef] [PubMed]
- Ershova, J.V.; Volchenkov, G.V.; Somova, T.R.; Kuznetsova, T.A.; Kaunetis, N.V.; Kaminski, D.; Demikhova, O.V.; Chernousova, L.N.; Vasilyeva, I.A.; Kerr, E.M.; et al. Impact of GeneXpert MTB/RIF® on treatment initiation and outcomes of RIF-resistant and RIF-susceptible TB patients in Vladimir TB dispensary, Russia. BMC Infect. Dis. 2020, 20, 543. [Google Scholar] [CrossRef]
- Raja, R.; Sreeramulu, P.N.; Dave, P.; Srinivasan, D. GeneXpert assay–A cutting-edge tool for rapid tissue diagnosis of tuberculous lymphadenitis. J. Clin. Tuberc. Other Mycobact. Dis. 2020, 21, 100204. [Google Scholar] [CrossRef]
- World Health Organization. Implementing the End TB Strategy: The Essentials, 2022 Update. 2022. Available online: https://www.who.int/publications/i/item/9789240065093 (accessed on 23 June 2024).
- World Health Organization. Global Tuberculosis Report 2022. 2022. Available online: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022 (accessed on 23 June 2024).
- Campelo, T.A.; Cardoso de Sousa, P.R.; Nogueira, L.L.; Frota, C.C.; Zuquim Antas, P.R. Revisiting the methods for detecting Mycobacterium tuberculosis: What has the new millennium brought thus far? Access Microbiol. 2021, 3, 000245. [Google Scholar] [CrossRef]
- Seki, M.; Kim, C.K.; Hayakawa, S.; Mitarai, S. Recent advances in tuberculosis diagnostics in resource-limited settings. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 1405–1410. [Google Scholar] [CrossRef] [PubMed]
- Figueredo, L.J.A.; Miranda, S.S.; Santos, L.B.D.; Manso, C.G.G.; Soares, V.M.; Alves, S.; Vater, M.C.; Kritski, A.L.; Carvalho, W.D.S.; Pádua, C.M.; et al. Cost analysis of smear microscopy and the Xpert assay for tuberculosis diagnosis: Average turnaround time. Rev. Soc. Bras. Med. Trop. 2020, 53, e20200314. [Google Scholar] [CrossRef]
- Vilchèze, C.; Kremer, L. Acid-Fast Positive and Acid-Fast Negative Mycobacterium tuberculosis: The Koch Paradox. Microbiol. Spectr. 2017, 5. [Google Scholar] [CrossRef] [PubMed]
- Steingart, K.R.; Henry, M.; Ng, V.; Hopewell, P.C.; Ramsay, A.; Cunningham, J.; Urbanczik, R.; Perkins, M.; Aziz, M.A.; Pai, M. Fluorescence versus conventional sputum smear microscopy for tuberculosis: A systematic review. Lancet Infect. Dis. 2006, 6, 570–581. [Google Scholar] [CrossRef]
- Desikan, P. Sputum smear microscopy in tuberculosis: Is it still relevant? Indian J. Med. Res. 2013, 137, 442–444. [Google Scholar]
- Chopra, S.; Mahajan, S.; Singh, Y.; Chopra, M. Comparative evaluation of Ziehl-Neelsen staining and Kinyoun’s staining in the diagnosis of clinically suspected cases of tuberculosis. IP Int. J. Med. Microbiol. Trop. Dis. 2022, 8, 149–153. [Google Scholar] [CrossRef]
- Zheng, R.; Xu, F.; Huang, X.; Wang, J.; Feng, Y.; Huang, J.; Qin, L. Evaluation of Aptamer Fluorescence Microscopy in the Diagnosis of Pulmonary Tuberculosis. Microbiol. Spectr. 2022, 10, e0260221. [Google Scholar] [CrossRef]
- Whitelaw, A.; Peter, J.; Sohn, H.; Viljoen, D.; Theron, G.; Badri, M.; Davids, V.; Pai, M.; Dheda, K. Comparative cost and performance of light-emitting diode microscopy in HIV-tuberculosis-co-infected patients. Eur. Respir. J. 2011, 38, 1393–1397. [Google Scholar] [CrossRef] [PubMed]
- Steingart, K.R.; Ng, V.; Henry, M.; Hopewell, P.C.; Ramsay, A.; Cunningham, J.; Urbanczik, R.; Perkins, M.D.; Aziz, M.A.; Pai, M. Sputum processing methods to improve the sensitivity of smear microscopy for tuberculosis: A systematic review. Lancet Infect. Dis. 2006, 6, 664–674. [Google Scholar] [CrossRef]
- Fu, H.T.; Tu, H.Z.; Lee, H.S.; Lin, Y.E.; Lin, C.W. Evaluation of an AI-Based TB AFB Smear Screening System for Laboratory Diagnosis on Routine Practice. Sensors 2022, 22, 8497. [Google Scholar] [CrossRef]
- Kotei, E.; Thirunavukarasu, R. Computational techniques for the automated detection of Mycobacterium tuberculosis from digitized sputum smear microscopic images: A systematic review. Prog. Biophys. Mol. Biol. 2022, 171, 4–16. [Google Scholar] [CrossRef] [PubMed]
- Zingue, D.; Weber, P.; Soltani, F.; Raoult, D.; Drancourt, M. Automatic microscopic detection of mycobacteria in sputum: A proof-of-concept. Sci. Rep. 2018, 8, 11308. [Google Scholar] [CrossRef]
- Panicker, R.O.; Kalmady, K.S.; Rajan, J.; Sabu, M.K. Automatic detection of tuberculosis bacilli from microscopic sputum smear images using deep learning methods. Biocybern. Biomed. Eng. 2018, 38, 691–699. [Google Scholar] [CrossRef]
- Van Deun, A.; Tahseen, S.; Affolabi, D.; Hossain, M.A.; Joloba, M.L.; Angra, P.K.; Ridderhof, J.C.; de Jong, B.C.; Rieder, H.L. Sputum smear microscopy in the Xpert® MTB/RIF era. Int. J. Tuberc. Lung. Dis. 2019, 23, 12–18. [Google Scholar] [CrossRef]
- World Health Organization. Operational Handbook on Tuberculosis. Module 3: Diagnosis—Rapid Diagnostics for Tuberculosis Detention, 2021 Update. 2021. Available online: https://www.who.int/publications/i/item/9789240030589 (accessed on 23 June 2024).
- Das, P.K.; Ganguly, S.B.; Mandal, B. Sputum smear microscopy in tuberculosis: It is still relevant in the era of molecular diagnosis when seen from the public health perspective. Biomed. Biotechnol. Res. J. 2019, 3, 77–79. [Google Scholar] [CrossRef]
- Sohn, H.; Kasaie, P.; Kendall, E.; Gomez, G.B.; Vassall, A.; Pai, M.; Dowdy, D. Informing decision-making for universal access to quality tuberculosis diagnosis in India: An economic-epidemiological model. BMC Med. 2019, 17, 155. [Google Scholar] [CrossRef] [PubMed]
- Maheshwari, P.; Chauhan, K.; Kadam, R.; Pujani, A.; Kaur, M.; Chitalia, M.; Dabas, H.; Perkins, M.D.; Boehme, C.C.; Denkinger, C.M.; et al. Market assessment of tuberculosis diagnostics in India in 2013. Int. J. Tuberc. Lung. Dis. 2016, 20, 304–313. [Google Scholar] [CrossRef]
- Kik, S.V.; Denkinger, C.M.; Chedore, P.; Pai, M. Replacing smear microscopy for the diagnosis of tuberculosis: What is the market potential? Eur. Respir. J. 2014, 43, 1793–1796. [Google Scholar] [CrossRef] [PubMed]
- Nachiappan, A.C.; Rahbar, K.; Shi, X.; Guy, E.S.; Mortani Barbosa, E.J., Jr.; Shroff, G.S.; Ocazionez, D.; Schlesinger, A.E.; Katz, S.I.; Hammer, M.M. Pulmonary Tuberculosis: Role of Radiology in Diagnosis and Management. Radiographics 2017, 37, 52–72. [Google Scholar] [CrossRef]
- Pinto, L.M.; Pai, M.; Dheda, K.; Schwartzman, K.; Menzies, D.; Steingart, K.R. Scoring systems using chest radiographic features for the diagnosis of pulmonary tuberculosis in adults: A systematic review. Eur. Respir. J. 2013, 42, 480–494. [Google Scholar] [CrossRef]
- World Health Organization. Chest Radiography in Tuberculosis Detection: Summary of Current WHO Recommendations and Guidance on Programmatic Approaches. 2016. Available online: https://www.who.int/publications/i/item/9789241511506 (accessed on 23 June 2024).
- Van’t Hoog, A.; Viney, K.; Biermann, O.; Yang, B.; Leeflang, M.M.; Langendam, M.W. Symptom- and chest-radiography screening for active pulmonary tuberculosis in HIV-negative adults and adults with unknown HIV status. Cochrane Database Syst. Rev. 2022, 3, CD010890. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.C.; Tan, Q.; Becerra, M.C.; Calderon, R.; Chiang, S.S.; Contreras, C.; Lecca, L.; Jimenez, J.; Perez-Velez, C.M.; Roya-Pabon, C.L.; et al. The Contribution of Chest Radiography to the Clinical Management of Children Exposed to Tuberculosis. Am. J. Respir. Crit. Care Med. 2022, 206, 892–900. [Google Scholar] [CrossRef]
- Nel, M.; Franckling-Smith, Z.; Pillay, T.; Andronikou, S.; Zar, H.J. Chest Imaging for Pulmonary TB-An Update. Pathogens 2022, 11, 161. [Google Scholar] [CrossRef] [PubMed]
- Feyisa, D.W.; Ayano, Y.M.; Debelee, T.G.; Schwenker, F. Weak Localization of Radiographic Manifestations in Pulmonary Tuberculosis from Chest X-ray: A Systematic Review. Sensors 2023, 23, 6781. [Google Scholar] [CrossRef]
- Meghji, J.; Simpson, H.; Squire, S.B.; Mortimer, K. A Systematic Review of the Prevalence and Pattern of Imaging Defined Post-TB Lung Disease. PLoS ONE 2016, 11, e0161176. [Google Scholar] [CrossRef]
- Park, M.; Lee, Y.; Kim, S.; Kim, Y.J.; Kim, S.Y.; Kim, Y.; Kim, H.M. Distinguishing nontuberculous mycobacterial lung disease and Mycobacterium tuberculosis lung disease on X-ray images using deep transfer learning. BMC Infect. Dis. 2023, 23, 32. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ding, W.; Mo, Y.; Shi, D.; Zhang, S.; Zhong, L.; Wang, K.; Wang, J.; Huang, C.; Zhang, S.; et al. Distinguishing nontuberculous mycobacteria from Mycobacterium tuberculosis lung disease from CT images using a deep learning framework. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 4293–4306. [Google Scholar] [CrossRef]
- Mohammed, H.; Oljira, L.; Roba, K.T.; Ngadaya, E.; Tesfaye, D.; Manyazewal, T.; Yimer, G. Impact of early chest radiography on delay in pulmonary tuberculosis case notification in Ethiopia. Int. J. Mycobacteriol. 2021, 10, 364–372. [Google Scholar] [CrossRef]
- Kulkarni, S.; Jha, S. Artificial intelligence, radiology, and tuberculosis: A review. Acad. Radiol. 2019, 27, 71–75. [Google Scholar] [CrossRef]
- Harris, M.; Qi, A.; Jeagal, L.; Torabi, N.; Menzies, D.; Korobitsyn, A.; Pai, M.; Nathavitharana, R.R.; Ahmad Khan, F. A systematic review of the diagnostic accuracy of artificial intelligence-based computer programs to analyze chest x-rays for pulmonary tuberculosis. PLoS ONE 2019, 14, e0221339. [Google Scholar] [CrossRef]
- World Health Organization. Rapid Communication on Systematic Screening for Tuberculosis. 2020. Available online: https://www.who.int/publications/i/item/9789240016552 (accessed on 23 June 2024).
- Nijiati, M.; Ma, J.; Hu, C.; Tuersun, A.; Abulizi, A.; Kelimu, A.; Zhang, D.; Li, G.; Zou, X. Artificial Intelligence Assisting the Early Detection of Active Pulmonary Tuberculosis from Chest X-Rays: A Population-Based Study. Front. Mol. Biosci. 2022, 9, 874475. [Google Scholar] [CrossRef]
- Heo, S.J.; Kim, Y.; Yun, S.; Lim, S.S.; Kim, J.; Nam, C.M.; Park, E.C.; Jung, I.; Yoon, J.H. Deep Learning Algorithms with Demographic Information Help to Detect Tuberculosis in Chest Radiographs in Annual Workers’ Health Examination Data. Int. J. Environ. Res. Public Health 2019, 16, 250. [Google Scholar] [CrossRef] [PubMed]
- Rahman, T.; Khandakar, A.; Kadir, M.A.; Islam, K.R.; Islam, K.F.; Mazhar, R.; Hamid, T.; Islam, M.T.; Mahbub, Z.B.; Ayari, M.A.; et al. Reliable tuberculosis detection using chest X-ray with deep learning, segmentation and visualization. IEEE Access 2020, 8, 191586–191601. [Google Scholar] [CrossRef]
- Qin, Z.Z.; Barrett, R.; Ahmed, S.; Sarker, M.S.; Paul, K.; Adel, A.S.S.; Banu, S.; Creswell, J. Comparing different versions of computer-aided detection products when reading chest X-rays for tuberculosis. PLoS Digit. Health 2022, 1, e0000067. [Google Scholar] [CrossRef] [PubMed]
- Geric, C.; Qin, Z.Z.; Denkinger, C.M.; Kik, S.V.; Marais, B.; Anjos, A.; David, P.M.; Ahmad Khan, F.; Trajman, A. The rise of artificial intelligence reading of chest X-rays for enhanced TB diagnosis and elimination. Int. J. Tuberc. Lung Dis. 2023, 27, 367–372. [Google Scholar] [CrossRef]
- World Health Organization. Global Tuberculosis Report 2023. TB Research and Innovation. 2023. Available online: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2023/tb-research-and-innovation (accessed on 26 December 2023).
- Xu, Y.; Wang, G.; Xu, M. Biohazard levels and biosafety protection for Mycobacterium tuberculosis strains with different virulence. Biosaf. Health 2020, 2, 135–141. [Google Scholar] [CrossRef]
- Drancourt, M.; Carrieri, P.; Gévaudan, M.J.; Raoult, D. Blood agar and Mycobacterium tuberculosis: The end of a dogma. J. Clin. Microbiol. 2003, 41, 1710–1711. [Google Scholar] [CrossRef]
- Stop TB Partnership. GLI Mycobacteriology Laboratory Manual. 2014. Available online: https://stoptb.org/wg/gli/assets/documents/gli_mycobacteriology_lab_manual_web.pdf (accessed on 21 August 2024).
- Kudoh, S.; Kudoh, T. A simple technique for culturing tubercle bacilli. Bull. World Health Organ. 1974, 51, 71–82. [Google Scholar]
- Franco-Sotomayor, G.; Rivera-Olivero, I.A.; Leon-Benitez, M.; Uruchima-Campoverde, S.E.; Cardenas-Franco, G.; Perdomo-Castro, M.E.; Cardenas-Franco, C.S.; Ortega-Vivanco, J.; Abad-Ruiz, A.S.; de Waard, J.H.; et al. Fast, Simple, and Cheap: The Kudoh-Ogawa Swab Method as an Alternative to the Petroff-Lowenstein-Jensen Method for Culturing of Mycobacterium tuberculosis. J. Clin. Microbiol. 2020, 58, e01424-19. [Google Scholar] [CrossRef]
- Costa, R.R.D.; Silva, S.F.D.; Fochat, R.C.; Macedo, R.L.; Pereira, T.V.; Silva, M.R.; Pinto, C.P.G.; Leite, I.C.G. Comparison between Ogawa-Kudoh and modified Petroff techniques for mycobacteria cultivation in the diagnosis of pulmonary tuberculosis. Einstein (São Paulo) 2018, 16, eAO4214. [Google Scholar] [CrossRef]
- Jaspe, R.C.; Rojas, Y.M.; Flores, L.A.; Sofia Toro, E.; Takiff, H.; de Waard, J.H. Evaluation of the Kudoh swab method for the culturing of Mycobacterium tuberculosis in rural areas. Trop. Med. Int. Health 2009, 14, 468–471. [Google Scholar] [CrossRef] [PubMed]
- Jobarteh, T.; Out, J.; Gitteh, E.; Mendy, F.S.; Faal-Jawara, T.I.; Ofori-Anyinam, B.; Sarr, B.; Riley, A.J.; Ayorinde, A.; de Jong, B.C.; et al. The use of Kudoh method for culture of Mycobacterium tuberculosis and Mycobacterium africanum in The Gambia. PLoS ONE 2024, 19, e0300042. [Google Scholar] [CrossRef]
- Madeira, C.M.; Azam, K.I.; Sato, D.N.; Khosa, C.; Bhatt, N.; Viegas, S.O. Evaluation of the Ogawa-Kudoh method for tuberculosis isolation in two health units in Mozambique. Afr. J. Lab. Med. 2020, 9, 929. [Google Scholar] [CrossRef] [PubMed]
- American Society for Microbiology. How TB Diagnostics Have Evolved Since the Second Century. 2021. Available online: https://asm.org/Articles/2021/March/How-TB-Diagnostics-Have-Evolved-Since-the-Second-C (accessed on 15 January 2024).
- Banaei, N.; Kincaid, E.Z.; Lin, S.Y.; Desmond, E.; Jacobs, W.R., Jr.; Ernst, J.D. Lipoprotein processing is essential for resistance of Mycobacterium tuberculosis to malachite green. Antimicrob. Agents Chemother. 2009, 53, 3799–3802. [Google Scholar] [CrossRef]
- Sigma Aldrich. Product M0178. Middlebrook 7H9 Broth Base. Available online: https://www.sigmaaldrich.com/BR/pt/product/sial/m0178?utm_source=google&utm_medium=cpc&utm_campaign=19329107722&utm_content=141938264102&gclid=CjwKCAiA-vOsBhAAEiwAIWR0TU6ck_CPWtIy4WGvax-giogdjnsUXVIiDWGXxJltDfyeCc_KXuKI8xoCFTAQAvD_BwE (accessed on 15 January 2024).
- Franzblau, S.G.; DeGroote, M.A.; Cho, S.H.; Andries, K.; Nuermberger, E.; Orme, I.M.; Mdluli, K.; Angulo-Barturen, I.; Dick, T.; Dartois, V.; et al. Comprehensive analysis of methods used for the evaluation of compounds against Mycobacterium tuberculosis. Tuberculosis 2012, 92, 453–488. [Google Scholar] [CrossRef] [PubMed]
- Roquet-Banères, F.; Alcaraz, M.; Hamela, C.; Abendroth, J.; Edwards, T.E.; Kremer, L. In vitro and in vivo efficacy of NITD-916 against Mycobacterium fortuitum. Antimicrob. Agents Chemother. 2023, 67, e0160722. [Google Scholar] [CrossRef]
- Aguilera-Correa, J.J.; Boudehen, Y.M.; Kremer, L. Characterization of Mycobacterium abscessus colony-biofilms based on bi-dimensional images. Antimicrob. Agents Chemother. 2023, 67, e00402-23. [Google Scholar] [CrossRef]
- Pedro, H.D.S.P.; Coelho, A.G.V.; Nardi, S.M.T.; Vilela, G.; Silva, J.O.; Nascimento, A.C.C.; Galle, L.C.; Aily, D.C.G.; Ferro e Silva, R.R.; Shikama, M.L.M.; et al. Performance of liquid culture MGIT after implementation in a network of public laboratories of Sao Paulo state. Rev. Inst. Adolfo Lutz 2017, 76, e1727. [Google Scholar]
- Palomino, J.C.; Martin, A.; Von Groll, A.; Portaels, F. Rapid culture-based methods for drug-resistance detection in Mycobacterium tuberculosis. J. Microbiol. Methods 2008, 75, 161–166. [Google Scholar] [CrossRef]
- Ma, Y.; Fan, J.; Li, S.; Dong, L.; Li, Y.; Wang, F.; Huo, F.; Pang, Y.; Qin, S. Comparison of Lowenstein-Jensen medium and MGIT culture system for recovery of Mycobacterium tuberculosis from abscess samples. Diagn. Microbiol. Infect. Dis. 2020, 96, 114969. [Google Scholar] [CrossRef]
- Kumari, P.; Thakur, J.K.; Kumar, P.; Kumar, R.; Parekh, D. Comparison of LJ Medium and BACTEC MGIT 960 Culture System for the Diagnosis of Tuberculosis. J. Clin. Diagn. Res. 2020, 14, DC09–DC13. [Google Scholar] [CrossRef]
- Kumar, H.; Singh, V.A.; Mehta, S.; Nagpal, S.; Bala, R.; Biswas, D. Comparative Evaluation of Conventional Media with Bactec MGIT 960 for Detection of Mycobacterium tuberculosis in Clinically Suspected Cases of Pulmonary and Extra-Pulmonary Tuberculosis. Indian J. Public Health 2020, 11, 818–822. [Google Scholar] [CrossRef]
- Salam, A.A.; Rehman, S.; Munir, M.K.; Iqbal, R.; Saeed, S.S.; Khan, S.U. Importance of Ziehl-Neelsen smear and culture on Lowenstein Jensen medium in diagnosis of pulmonary tuberculosis. Pak. J. Chest Med. 2014, 20, 1–5. [Google Scholar]
- Gopalaswamy, R.; Shanmugam, S.; Mondal, R.; Subbian, S. Of tuberculosis and non-tuberculous mycobacterial infections—A comparative analysis of epidemiology, diagnosis and treatment. J. Biomed. Sci. 2020, 27, 74. [Google Scholar] [CrossRef]
- MacLean, E.; Kohli, M.; Weber, S.F.; Suresh, A.; Schumacher, S.G.; Denkinger, C.M.; Pai, M. Advances in Molecular Diagnosis of Tuberculosis. J. Clin. Microbiol. 2020, 58, e01582-19. [Google Scholar] [CrossRef]
- Acharya, B.; Acharya, A.; Gautam, S.; Ghimire, S.P.; Mishra, G.; Parajuli, N.; Sapkota, B. Advances in diagnosis of Tuberculosis: An update into molecular diagnosis of Mycobacterium tuberculosis. Mol. Biol. Rep. 2020, 47, 4065–4075. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Manual for Selection of Molecular WHO-Recommended Rapid Diagnostic Tests for Detection of Tuberculosis and Drug-Resistant Tuberculosis. 2022. Available online: https://www.who.int/publications/i/item/9789240042575 (accessed on 23 June 2024).
- Nagai, K.; Horita, N.; Yamamoto, M.; Tsukahara, T.; Nagakura, H.; Tashiro, K.; Shibata, Y.; Watanabe, H.; Nakashima, K.; Ushio, R.; et al. Diagnostic test accuracy of loop-mediated isothermal amplification assay for Mycobacterium tuberculosis: Systematic review and meta-analysis. Sci. Rep. 2016, 6, 39090. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. The Use of Loop-Mediated Isothermal Amplification (TB-LAMP) for the Diagnosis of Pulmonary Tuberculosis: Policy Guidance. 2016. Available online: https://iris.who.int/bitstream/handle/10665/249154/9789241511186-eng.pdf?sequence=1 (accessed on 23 June 2024).
- Hain Lifescience. FluoroType® MTB. Available online: https://www.hain-lifescience.de/en/products/microbiology/mycobacteria/tuberculosis/fluorotype-mtb.html (accessed on 2 December 2023).
- World Health Organization. A2.4 Information Sheet: Practical Considerations for Implementation of the Bruker-Hain Lifesciences FluoroType MTB and FluoroType MTBDR. Available online: https://tbksp.org/en/node/1709 (accessed on 13 December 2023).
- Hofmann-Thiel, S.; Hoffmann, H. Evaluation of Fluorotype MTB for detection of Mycobacterium tuberculosis complex DNA in clinical specimens from a low-incidence country. BMC Infect. Dis. 2014, 14, 59. [Google Scholar] [CrossRef]
- Dippenaar, A.; Derendinger, B.; Dolby, T.; Beylis, N.; van Helden, P.D.; Theron, G.; Warren, R.M.; de Vos, M. Diagnostic accuracy of the FluoroType MTB and MTBDR VER 2.0 assays for the centralized high-throughput detection of Mycobacterium tuberculosis complex DNA and isoniazid and rifampicin resistance. Clin. Microbiol. Infect. 2021, 27, 1351.e1–1351.e4. [Google Scholar] [CrossRef]
- Cepheid. Xpert MTB/RIF Assay: Package Insert (Rev. G). 2020. Available online: https://www.cepheid.com/content/dam/www-cepheid-com/documents/package-insert-files/Xpert-MTB-RIF-PORTUGUESE-Package-Insert-301-1404-PT-Rev-G.pdf (accessed on 9 December 2023).
- Li, S.; Liu, B.; Peng, M.; Chen, M.; Yin, W.; Tang, H.; Luo, Y.; Hu, P.; Ren, H. Diagnostic accuracy of Xpert MTB/RIF for tuberculosis detection in different regions with different endemic burden: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0180725. [Google Scholar] [CrossRef]
- Kaswala, C.; Schmiedel, Y.; Kundu, D.; George, M.M.; Dayanand, D.; Devasagayam, E.; Manesh, S.A.M.; Kumar, S.S.; Michael, J.S.; Ninan, M.M.; et al. Accuracy of Xpert MTB/RIF Ultra for the diagnosis of tuberculosis in adult patients: A retrospective cohort study. Int. J. Infect. Dis. 2022, 122, 566–568. [Google Scholar] [CrossRef] [PubMed]
- Molbio Diagnostics. Truenat™ MTB Package Insert [PDF Document]. Available online: https://www.molbiodiagnostics.com/uploads/product_download/20231107.150156~MTB-pack-insert-V-08.pdf (accessed on 23 June 2024).
- Molbio Diagnostic. Truenat™ MTB Plus Package Insert [PDF Document]. Available online: https://www.molbiodiagnostics.com/uploads/product_download/20190927.152146~Truenat-MTB-Plus-packinsert.pdf (accessed on 23 June 2024).
- Abbott. RealTime MTB Assay. Molecular Diagnostics. Available online: https://www.molecular.abbott/int/en/products/infectious-disease/realtime-mtb (accessed on 14 December 2023).
- Chen, J.H.; She, K.K.; Kwong, T.C.; Wong, O.Y.; Siu, G.K.; Leung, C.C.; Chang, K.C.; Tam, C.M.; Ho, P.L.; Cheng, V.C.; et al. Performance of the new automated Abbott RealTime MTB assay for rapid detection of Mycobacterium tuberculosis complex in respiratory specimens. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 1827–1832. [Google Scholar] [CrossRef]
- Abbott. RealTime MTB RIF/INH. Molecular Diagnostics. Available online: https://www.molecular.abbott/int/en/products/infectious-disease/realtime-mtb-rif-inh-resistance (accessed on 23 December 2023).
- BD MAX™ MDR-TB Assay Package Insert; BD Life Sciences: Sparks, MD, USA, 2019; Available online: https://static.bd.com/documents/eifu/P0228_ZMG_H_SD_P0228.pdf (accessed on 14 December 2023).
- Hain Lifescience. FluoroType® MTBDR VER 2.0—Your Test System for True MDR-TB Testing. Available online: https://www.hain-lifescience.de/en/products/microbiology/mycobacteria/tuberculosis/fluorotype-mtbdr.html (accessed on 14 December 2023).
- Cobas® MTB. Roche Diagnostics. Available online: https://diagnostics.roche.com/global/en/products/params/cobas-mtb.html (accessed on 14 December 2023).
- World Health Organization. Information Sheet: Practical Consideration for Implementation of the Roche Cobas MTB and Cobas MTB-RIF/INH Assays. 2021. Available online: https://www.stoptb.org/file/10477/download (accessed on 23 December 2023).
- Cobas® MTB-RIF/INH. Roche Diagnostics. Available online: https://diagnostics.roche.com/global/en/products/params/cobas-mtb-rif-inh.html (accessed on 23 December 2023).
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, E63. [Google Scholar] [CrossRef]
- Tomita, N.; Mori, Y.; Kanda, H.; Notomi, T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat. Protoc. 2008, 3, 877–882. [Google Scholar] [CrossRef]
- Mori, Y.; Nagamine, K.; Tomita, N.; Notomi, T. Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem. Biophys. Res. Commun. 2001, 289, 150–154. [Google Scholar] [CrossRef]
- World Health Organization. WHO Operational Handbook on Tuberculosis: Module 3: Diagnosis: Rapid Diagnostics for Tuberculosis Detection, 3rd ed.; WHO: Geneva, Switzerland, 2024; Available online: https://iris.who.int/bitstream/handle/10665/376155/9789240089501-eng.pdf?sequence=1 (accessed on 23 June 2024).
- Hain Lifescience. FluoroType® Mycobacteria VER 1.0—Differentiate Nontuberculous Mycobacteria. Available online: https://www.hain-lifescience.de/en/products/microbiology/mycobacteria/ntm/fluorotype-mycobacteria.html (accessed on 20 August 2024).
- Khairullah, A.R.; Moses, I.B.; Kusala, M.K.J.; Tyasningsih, W.; Ayuti, S.R.; Rantam, F.A.; Fauziah, I.; Silaen, O.S.M.; Puspitasari, Y.; Aryaloka, S.; et al. Unveiling insights into bovine tuberculosis: A comprehensive review. Open. Vet. J. 2024, 14, 1330–1344. [Google Scholar] [CrossRef]
- Kasir, D.; Osman, N.; Awik, A.; El Ratel, I.; Rafei, R.; Al Kassaa, I.; El Safadi, D.; Salma, R.; El Omari, K.; Cummings, K.J.; et al. Zoonotic Tuberculosis: A Neglected Disease in the Middle East and North Africa (MENA) Region. Diseases 2023, 11, 39. [Google Scholar] [CrossRef]
- de Macedo Couto, R.; Santana, G.O.; Ranzani, O.T.; Waldman, E.A. One Health and surveillance of zoonotic tuberculosis in selected low-income, middle-income and high-income countries: A systematic review. PLoS Negl. Trop. Dis. 2022, 16, e0010428. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Line Probe Assays for Detection of Drug-Resistant Tuberculosis: Interpretation and Reporting Manual for Laboratory Staff and Clinicians. 2022. Available online: https://www.who.int/publications/i/item/9789240046665 (accessed on 23 June 2024).
- Hain Lifescience. GenoType MTBDRplus. Available online: https://www.hain-lifescience.de/en/products/microbiology/mycobacteria/tuberculosis/genotype-mtbdrplus.html (accessed on 3 January 2024).
- Moga, S.; Bobosha, K.; Fikadu, D.; Zerihun, B.; Diriba, G.; Amare, M.; Kempker, R.R.; Blumberg, H.M.; Abebe, T. Diagnostic performance of the GenoType MTBDRplus VER 2.0 line probe assay for the detection of isoniazid resistant Mycobacterium tuberculosis in Ethiopia. PLoS ONE 2023, 18, e0284737. [Google Scholar] [CrossRef] [PubMed]
- Stephen, S.; Muzhizhizhi, D.; Dhibi, N.; Chidemo, T.; Samaneka, W.; Matubu, T.A.; Hakim, J.G.; Chirenje, Z.M. Validation of the GenoType® MTBDRplus Ver 2.0 assay for detection of rifampicin and isoniazid resistance in Mycobacterium tuberculosis complex isolates at UZCHS-CTRC TB research laboratory. Int. J. Mycobacteriol. 2019, 8, 83–88. [Google Scholar] [CrossRef]
- Tan, Y.; Li, Q.; Wang, Q.; Sun, H.; Chen, J.; Cai, X.; Yao, Y.; Bao, X.; Wang, C.; Liu, Y.; et al. Evaluation of the MTBDRplus 2.0 assay for the detection of multidrug resistance among persons with presumptive pulmonary TB in China. Sci. Rep. 2017, 7, 3364. [Google Scholar] [CrossRef] [PubMed]
- Meaza, A.; Kebede, A.; Yaregal, Z.; Dagne, Z.; Moga, S.; Yenew, B.; Diriba, G.; Molalign, H.; Tadesse, M.; Adisse, D.; et al. Evaluation of genotype MTBDRplus VER 2.0 line probe assay for the detection of MDR-TB in smear positive and negative sputum samples. BMC Infect. Dis. 2017, 17, 280. [Google Scholar] [CrossRef] [PubMed]
- Hain Lifescience. GenoType MTBDRsl. Available online: https://www.hain-lifescience.de/en/products/microbiology/mycobacteria/tuberculosis/genotype-mtbdrsl.html (accessed on 3 January 2024).
- Bouzouita, I.; Draoui, H.; Cabibbe, A.M.; Essalah, L.; Bejaoui, S.; Trovato, A.; Messadi, F.; Cirillo, D.M.; Slim-Saidi, L. Performance of the GenoType MTBDRsl V 2.0 for detecting second-line drugs resistance of Mycobacterium tuberculosis isolates in Tunisia. Res. Microbiol. 2021, 172, 103816. [Google Scholar] [CrossRef]
- Nathavitharana, R.R.; Cudahy, P.G.; Schumacher, S.G.; Steingart, K.R.; Pai, M.; Denkinger, C.M. Accuracy of line probe assays for the diagnosis of pulmonary and multidrug-resistant tuberculosis: A systematic review and meta-analysis. Eur. Respir. J. 2017, 49, 1601075. [Google Scholar] [CrossRef]
- Miller, S.; Chiu, C. The Role of Metagenomics and Next-Generation Sequencing in Infectious Disease Diagnosis. Clin. Chem. 2021, 68, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Di Resta, C.; Galbiati, S.; Carrera, P.; Ferrari, M. Next-generation sequencing approach for the diagnosis of human diseases: Open challenges and new opportunities. EJIFCC 2018, 29, 4–14. [Google Scholar]
- Lecuit, M.; Eloit, M. The diagnosis of infectious diseases by whole genome next generation sequencing: A new era is opening. Front. Cell. Infect. Microbiol. 2014, 4, 25. [Google Scholar] [CrossRef]
- World Health Organization. The Use of Next-Generation Sequencing Technologies for the Detection of Mutations Associated with Drug Resistance in Mycobacterium tuberculosis Complex: Technical Guide. 2018. Available online: https://apps.who.int/iris/handle/10665/274443 (accessed on 23 December 2023).
- World Health Organization. The Use of Next-Generation Sequencing for the Surveillance of Drug-Resistant Tuberculosis: An Implementation Manual. 2023. Available online: https://www.who.int/publications/i/item/9789240078079 (accessed on 23 December 2023).
- Vogel, M.; Utpatel, C.; Corbett, C.; Kohl, T.A.; Iskakova, A.; Ahmedov, S.; Antonenka, U.; Dreyer, V.; Ibrahimova, A.; Kamarli, C.; et al. Implementation of whole genome sequencing for tuberculosis diagnostics in a low-middle income, high MDR-TB burden country. Sci. Rep. 2021, 11, 15333. [Google Scholar] [CrossRef]
- Ness, T.E.; DiNardo, A.; Farhat, M.R. High Throughput Sequencing for Clinical Tuberculosis: An Overview. Pathogens 2022, 11, 1343. [Google Scholar] [CrossRef]
- Tsuchida, S.; Umemura, H.; Nakayama, T. Current Status of Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS) in Clinical Diagnostic Microbiology. Molecules 2020, 25, 4775. [Google Scholar] [CrossRef]
- Alcolea-Medina, A.; Fernandez, M.T.C.; Montiel, N.; García, M.P.L.; Sevilla, C.D.; North, N.; Lirola, M.J.M.; Wilks, M. An improved simple method for the identification of Mycobacteria by MALDI-TOF MS (Matrix-Assisted Laser Desorption- Ionization mass spectrometry). Sci. Rep. 2019, 9, 20216. [Google Scholar] [CrossRef] [PubMed]
- Ou, X.; Song, Z.; Zhao, B.; Pei, S.; Teng, C.; Zheng, H.; He, W.; Xing, R.; Wang, Y.; Wang, S.; et al. Diagnostic efficacy of an optimized nucleotide MALDI-TOF-MS assay for anti-tuberculosis drug resistance detection. Eur. J. Clin. Microbiol. Infect. Dis. 2024, 43, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Tan, G.; Yang, J.; Guo, Y.; Huang, C.; Sha, W.; Yu, F. Prediction of Mycobacterium tuberculosis drug resistance by nucleotide MALDI-TOF-MS. Int. J. Infect. Dis. 2022, 121, 47–54. [Google Scholar] [CrossRef]
- Shi, J.; He, G.; Ning, H.; Wu, L.; Wu, Z.; Ye, X.; Qiu, C.; Jiang, X. Application of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) in the detection of drug resistance of Mycobacterium tuberculosis in re-treated patients. Tuberculosis 2022, 135, 102209. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Q.; Xu, B.; Lin, Y.; Yang, X.; Tong, J.; Huang, C. Clinical performance of nucleotide MALDI-TOF-MS in the rapid diagnosis of pulmonary tuberculosis and drug resistance. Tuberculosis 2023, 143, 102411. [Google Scholar] [CrossRef]
- Su, K.Y.; Yan, B.S.; Chiu, H.C.; Yu, C.J.; Chang, S.Y.; Jou, R.; Liu, J.L.; Hsueh, P.R.; Yu, S.L. Rapid Sputum Multiplex Detection of the M. tuberculosis Complex (MTBC) and Resistance Mutations for Eight Antibiotics by Nucleotide MALDI-TOF MS. Sci. Rep. 2017, 7, 41486. [Google Scholar] [CrossRef]
- Ceyssens, P.J.; Soetaert, K.; Timke, M.; Van den Bossche, A.; Sparbier, K.; De Cremer, K.; Kostrzewa, M.; Hendrickx, M.; Mathys, V. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Combined Species Identification and Drug Sensitivity Testing in Mycobacteria. J. Clin. Microbiol. 2017, 55, 624–634. [Google Scholar] [CrossRef]
- Jiang, L.; Xin, J.; Liang, L.; Xia, M.; Li, J.; Tong, J.; Huang, C.; Li, T. Enhanced diagnosis of pulmonary tuberculosis through nucleotide MALDI-TOF MS analysis of BALF: A retrospective clinical study. Sci. Rep. 2024, 14, 18416. [Google Scholar] [CrossRef] [PubMed]
- Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to biosensors. Essays Biochem. 2016, 60, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Fan, S.; Ma, Y.; Chen, H.; Xu, J.F.; Pi, J.; Wang, W.; Chen, G. Current progress of functional nanobiosensors for potential tuberculosis diagnosis: The novel way for TB control? Front. Bioeng. Biotechnol. 2022, 10, 1036678. [Google Scholar] [CrossRef]
- Rizi, K.S.; Hatamluyi, B.; Rezayi, M.; Meshkat, Z.; Sankian, M.; Ghazvini, K.; Farsiani, H.; Aryan, E. Response surface methodology optimized electrochemical DNA biosensor based on HAPNPTs/PPY/MWCNTs nanocomposite for detecting Mycobacterium tuberculosis. Talanta 2021, 226, 122099. [Google Scholar] [CrossRef] [PubMed]
- Golichenari, B.; Nosrati, R.; Farokhi-Fard, A.; Faal Maleki, M.; Gheibi Hayat, S.M.; Ghazvini, K.; Vaziri, F.; Behravan, J. Electrochemical-based biosensors for detection of Mycobacterium tuberculosis and tuberculosis biomarkers. Crit. Rev. Biotechnol. 2019, 39, 1056–1077. [Google Scholar] [CrossRef]
- Mobed, A.; Darvishi, M.; Kohansal, F.; Dehfooli, F.M.; Alipourfard, I.; Tahavvori, A.; Ghazi, F. Biosensors; nanomaterial-based methods in diagnosing of Mycobacterium tuberculosis. J. Clin. Tuberc. Other Mycobact. Dis. 2023, 34, 100412. [Google Scholar] [CrossRef]
- de Martino, M.; Lodi, L.; Galli, L.; Chiappini, E. Immune Response to Mycobacterium tuberculosis: A Narrative Review. Front. Pediatr. 2019, 7, 350. [Google Scholar] [CrossRef] [PubMed]
- Scriba, T.J.; Coussens, A.K.; Fletcher, H.A. Human Immunology of Tuberculosis. Microbiol. Spectr. 2017, 5, TBTB2-0016. [Google Scholar] [CrossRef] [PubMed]
- Trajman, A.; Steffen, R.E.; Menzies, D. Interferon-Gamma Release Assays versus Tuberculin Skin Testing for the Diagnosis of Latent Tuberculosis Infection: An Overview of the Evidence. Pulm. Med. 2013, 2013, 601737. [Google Scholar] [CrossRef]
- McIntyre, S.; Warner, J.; Rush, C.; Vanderven, H.A. Antibodies as clinical tools for tuberculosis. Front. Immunol. 2023, 14, 1278947. [Google Scholar] [CrossRef]
- World Health Organization. WHO Operational Handbook on Tuberculosis. Module 3: Diagnosis. Tests for Tuberculosis Infection. 2022. Available online: https://www.who.int/publications/i/item/9789240058347 (accessed on 23 January 2024).
- Melkie, S.T.; Arias, L.; Farroni, C.; Jankovic Makek, M.; Goletti, D.; Vilaplana, C. The role of antibodies in tuberculosis diagnosis, prophylaxis and therapy: A review from the ESGMYC study group. Eur. Respir. Rev. 2022, 31, 210218. [Google Scholar] [CrossRef]
- World Health Organization. Use of Alternative Interferon-Gamma Release Assays for the Diagnosis of TB Infection: WHO Policy Statement. 2022. Available online: https://www.who.int/publications/i/item/9789240042346 (accessed on 25 January 2024).
- World Health Organization. WHO Consolidated Guidelines on Tuberculosis. Module 1: Prevention—Tuberculosis Preventive Treatment. 2020. Available online: https://www.who.int/publications/i/item/9789240001503 (accessed on 26 January 2024).
- Zhou, G.; Luo, Q.; Luo, S.; Chen, H.; Cai, S.; Guo, X.; He, J.; Xia, Y.; Li, H.; Zhou, Y.; et al. Indeterminate results of interferon gamma release assays in the screening of latent tuberculosis infection: A systematic review and meta-analysis. Front. Immunol. 2023, 14, 1170579. [Google Scholar] [CrossRef]
- Oxford Immunotec. T-SPOT.TB [Package Insert]. Available online: https://www.oxfordimmunotec.com/international/wp-content/uploads/sites/3/Final-File-PI-TB-US-V6.pdf (accessed on 16 November 2023).
- Qiagen. QuantiFERON-TB Gold Plus (QFT-Plus) Package Insert 01/2023. 2023. Available online: https://www.qiagen.com/us/resources/download.aspx?id=ac068fc7-a994-4443-ac7c-dda43ce2bc5e&lang=en (accessed on 16 November 2023).
- WANTAI TB-IGRA Package Insert; Beijing Wantai Biological Pharmacy Enterprise Co., Ltd.: Beijing, China, 2022; Available online: https://www.ystwt.cn/wp-content/uploads/2018/04/Wantai-TB-IGRA.pdf (accessed on 16 November 2023).
- Sun, Y.; Yao, X.; Ni, Y.; Peng, Y.; Shi, G. Diagnostic Efficacy of T-SPOT.TB for Active Tuberculosis in Adult: A Retrospective Study. Infect. Drug Resist. 2022, 15, 7077–7093. [Google Scholar] [CrossRef]
- Luo, Y.; Tang, G.; Yuan, X.; Lin, Q.; Mao, L.; Song, H.; Xue, Y.; Wu, S.; Ouyang, R.; Hou, H.; et al. Combination of Blood Routine Examination and T-SPOT.TB Assay for Distinguishing Between Active Tuberculosis and Latent Tuberculosis Infection. Front. Cell Infect. Microbiol. 2021, 1, 575650. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Phan, H.; Trinh, T.; Nguyen, H.; Doan, H.; Pham, N.; Nguyen, H.; Nguyen, H.; Nguyen, H.V.; Le, H.V.; et al. Sensitivity and characteristics associated with positive QuantiFERON-TB Gold-Plus assay in children with confirmed tuberculosis. PLoS ONE 2019, 14, e0213304. [Google Scholar] [CrossRef] [PubMed]
- Takasaki, J.; Manabe, T.; Morino, E.; Muto, Y.; Hashimoto, M.; Iikura, M.; Izumi, S.; Sugiyama, H.; Kudo, K. Sensitivity and specificity of QuantiFERON-TB Gold Plus compared with QuantiFERON-TB Gold In-Tube and T-SPOT.TB on active tuberculosis in Japan. J. Infect. Chemother. 2018, 24, 188–192. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, X.; Zhang, Y.; Zhang, Y.; Huo, F.; Zhou, B.; Deng, G.; Liu, X. Analysis of Factors Influencing Diagnostic Accuracy of T-SPOT.TB for Active Tuberculosis in Clinical Practice. Sci. Rep. 2017, 7, 7764. [Google Scholar] [CrossRef] [PubMed]
- Hamada, Y.; Cirillo, D.M.; Matteelli, A.; Penn-Nicholson, A.; Rangaka, M.X.; Ruhwald, M. Tests for tuberculosis infection: Landscape analysis. Eur. Respir. J. 2021, 58, 2100167. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Tuberculin Skin Testing. CDC. 2020. Available online: https://www.cdc.gov/tb/publications/factsheets/testing/Tuberculin_Skin_Testing_Information_for_Health_Care_Providers.pdf (accessed on 16 November 2023).
- Piñeiro, R.; Mellado, M.J.; Cilleruelo, M.J.; García-Ascaso, M.; Medina-Claros, A.; García-Hortelano, M. Tuberculin skin test in bacille Calmette-Guérin-vaccinated children: How should we interpret the results? Eur. J. Pediatr. 2012, 171, 1625–1632. [Google Scholar] [CrossRef]
- Maes, M.; Giménez, J.F.; D’Alessandro, A.; De Waard, J.H. The stability of human, bovine and avian tuberculin purified protein derivative (PPD). J. Infect. Dev. Ctries. 2011, 5, 781–785. [Google Scholar] [CrossRef] [PubMed]
- Gualano, G.; Mencarini, P.; Lauria, F.N.; Palmieri, F.; Mfinanga, S.; Mwaba, P.; Chakaya, J.; Zumla, A.; Ippolito, G. Tuberculin skin test—Outdated or still useful for Latent TB infection screening? Int. J. Infect. Dis. 2019, 80, S20–S22. [Google Scholar] [CrossRef]
- Cy-Tb Package Insert; Serum Institute: Pune, India, 2022.
- Goscé, L.; Allel, K.; Hamada, Y.; Korobitsyn, A.; Ismail, N.; Bashir, S.; Denkinger, C.M.; Abubakar, I.; White, P.J.; Rangaka, M.X. Economic evaluation of novel Mycobacterium tuberculosis specific antigen-based skin tests for detection of TB infection: A modelling study. PLoS Glob. Public Health 2023, 3, e0002573. [Google Scholar] [CrossRef]
- Hamada, Y.; Kontsevaya, I.; Surkova, E.; Wang, T.T.; Wan-Hsin, L.; Matveev, A.; Ziganshina, L.E.; Denkinger, C.M.; Korobitsyn, A.; Ismail, N.; et al. A Systematic Review on the Safety of Mycobacterium tuberculosis-Specific Antigen-Based Skin Tests for Tuberculosis Infection Compared with Tuberculin Skin Tests. Open Forum Infect. Dis. 2023, 10, ofad228. [Google Scholar] [CrossRef]
- To, K.W.; Zhang, R.; Lee, S.S. Is the new tuberculous antigen-based skin test ready for use as an alternative to tuberculin skin test/interferon-gamma release assay for tuberculous diagnosis? A narrative review. Int. J. Infect. Dis. 2024, 141, 106992. [Google Scholar] [CrossRef] [PubMed]
- Olbrich, L.; Verghese, V.P.; Franckling-Smith, Z.; Sabi, I.; Ntinginya, N.E.; Mfinanga, A.; Banze, D.; Viegas, S.; Khosa, C.; Semphere, R.; et al. Diagnostic accuracy of a three-gene Mycobacterium tuberculosis host response cartridge using fingerstick blood for childhood tuberculosis: A multicentre prospective study in low-income and middle-income countries. Lancet Infect. Dis. 2024, 24, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Lyon, C.J.; LaCourse, S.M.; Zheng, W.; Stern, J.; Escudero, J.N.; Murithi, W.B.; Njagi, L.; John-Stewart, G.; Hawn, T.R.; et al. Sensitive Blood-Based Detection of HIV-1 and Mycobacterium tuberculosis Peptides for Disease Diagnosis by Immuno-Affinity Liquid Chromatography-Tandem Mass Spectrometry: A Method Development and Proof-of-Concept Study. Clin. Chem. 2023, 69, 1409–1419. [Google Scholar] [CrossRef]
- Moore, C.M.; Dhillon, J.; Flynn, R.; Gizynski, K.; Adams, C.; Morgan, G.; McGurk, D.; Boada, E.; Shabestary, S.; Peat, J.; et al. A Novel Microfluidic Dielectrophoresis Technology to Enable Rapid Diagnosis of Mycobacterium tuberculosis in Clinical Samples. J. Mol. Diagn. 2023, 25, 513–523. [Google Scholar] [CrossRef]
- Ketchanji Mougang, Y.C.; Endale Mangamba, L.M.; Capuano, R.; Ciccacci, F.; Catini, A.; Paolesse, R.; Mbatchou Ngahane, H.B.; Palombi, L.; Di Natale, C. On-Field Test of Tuberculosis Diagnosis through Exhaled Breath Analysis with a Gas Sensor Array. Biosensors 2023, 13, 570. [Google Scholar] [CrossRef]
- Thermo Fisher Scientific. Sensititre™ Mycobacterium tuberculosis MYCOTBI AST Plate. Available online: https://www.thermofisher.com/order/catalog/product/MYCOTBI (accessed on 12 January 2024).
- Olbrich, L.; Khambati, N.; Bijker, E.M.; Ruhwald, M.; Heinrich, N.; Song, R. FujiLAM for the diagnosis of childhood tuberculosis: A systematic review. BMJ Paediatr. Open 2022, 6, e001447. [Google Scholar] [CrossRef]
- Li, Z.; Tong, X.; Liu, S.; Yue, J.; Fan, H. The Value of FujiLAM in the Diagnosis of Tuberculosis: A Systematic Review and Meta-Analysis. Front. Public Health 2021, 9, 757133. [Google Scholar] [CrossRef]
- Kerkhoff, A.D.; Sossen, B.; Schutz, C.; Reipold, E.I.; Trollip, A.; Moreau, E.; Schumacher, S.G.; Burton, R.; Ward, A.; Nicol, M.P.; et al. Diagnostic sensitivity of SILVAMP TB-LAM (FujiLAM) point-of-care urine assay for extra-pulmonary tuberculosis in people living with HIV. Eur. Respir. J. 2020, 55, 1901259. [Google Scholar] [CrossRef] [PubMed]
- Chenai Mathabire Rücker, S.; Lissouba, P.; Akinyi, M.; Vicent Lubega, A.; Stewart, R.; Tamayo Antabak, N.; Taremwa Mugisha, I.; Ohler, L.; Macuácua, H.; Atieno, M.; et al. Feasibility and acceptability of using the novel urine-based FujiLAM test to detect tuberculosis: A multi-country mixed-methods study. J. Clin. Tuberc. Other Mycobact. Dis. 2022, 27, 100316. [Google Scholar] [CrossRef]
- SD Biosensor. STANDARD E TB-Feron ELISA. Available online: https://www.sdbiosensor.com/product/product_view?product_no=113 (accessed on 10 January 2024).
- Yoo, I.Y.; Lee, J.; Choi, A.R.; Jun, Y.H.; Lee, H.Y.; Kang, J.Y.; Park, Y.-J. Comparative Evaluation of Standard E TB-Feron ELISA and QuantiFERON-TB Gold Plus Assays in Patients with Tuberculosis and Healthcare Workers. Diagnostics 2021, 11, 1659. [Google Scholar] [CrossRef]
- Jung, J.; Jhun, B.W.; Jeong, M.; Yoon, S.J.; Huh, H.J.; Jung, C.W.; Kim, K.; Park, J.B.; Kim, D.J.; Huh, W.; et al. Is the New Interferon-Gamma Releasing Assay Beneficial for the Diagnosis of Latent and Active Mycobacterium tuberculosis Infections in Tertiary Care Setting? J. Clin. Med. 2021, 10, 1376. [Google Scholar] [CrossRef]
- SD Biosensor. STANDARD F TB-Feron FIA (IFN-Gamma). Available online: https://www.sdbiosensor.com/product/product_view?product_no=167# (accessed on 10 January 2024).
- Saint-Pierre, G.; Conei, D.; Cantillana, P.; Raijmakers, M.; Vera, A.; Gutiérrez, D.; Kennedy, C.; Peralta, P.; Ramonda, P. Comparison of Two Tuberculosis Infection Tests in a South American Tertiary Hospital: STANDARD F TB-Feron FIA vs. QIAreachTM QuantiFERON-TB. Diagnostics 2023, 13, 1162. [Google Scholar] [CrossRef] [PubMed]
- bioMérieux. VIDAS® TB-IGRA. bioMérieux Diagnostics. Available online: https://www.biomerieux-diagnostics.com/vidasr-tb-igra (accessed on 10 January 2024).
- Petruccioli, E.; Farroni, C.; Cuzzi, G.; Vanini, V.; Palmieri, F.; Vittozzi, P.; Goletti, D. VIDAS® TB-IGRA reagents induce a CD4+ and CD8+ T-cell IFN-γ response for both TB infection and active TB. Int. J. Tuberc. Lung Dis. 2022, 26, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Diagbouga, S.; Djibougou, A.D.; Pease, C.; Alcaide, A.; Berthoux, A.; Bruiners, N.; Cirillo, D.M.; Combary, A.; Falchero, N.; Handler, D.; et al. Preliminary diagnostic performance of the VIDAS® TB-IGRA for the detection of Mycobacterium tuberculosis infection and disease. medRxiv 2022. [Google Scholar] [CrossRef]
- SD Biosensor. STANDARD M M10 MDR-TB. Available online: https://www.sdbiosensor.com/product/product_view?product_no=23007 (accessed on 12 January 2024).
- ClinicalTrials.gov. Phase II: Multicentre Clinical Study to Assess the Performance of the Bioneer IRONqPCR ™ RFIA Kit for INH-, RIF-, FQ- and AG-Resistance Detection (NCT05117788). 2022. Available online: https://clinicaltrials.gov/study/NCT05117788#study-overview (accessed on 12 January 2024).
- ABL SA. DEEPCHEK® ASSAY 13-PLEX KB DRUG SUSCEPTIBILITY TESTING (CE-IVD). Available online: https://www.ablsa.com/laboratory-applications/bacteriochek-tb-software/ (accessed on 17 January 2024).
- Zhou, R.; Qiu, X.; Ying, J.; Yue, Y.; Ruan, T.; Yu, L.; Liu, Q.; Sun, X.; Wang, S.; Qu, Y.; et al. Diagnostic performance of adenosine deaminase for abdominal tuberculosis: A systematic review and meta-analysis. Front. Public Health. 2022, 10, 938544. [Google Scholar] [CrossRef]
- Gopalaswamy, R.; Dusthackeer, V.A.; Kannayan, S.; Subbian, S. Extrapulmonary tuberculosis—An update on the diagnosis, treatment and drug resistance. J. Respir. 2021, 1, 141–164. [Google Scholar] [CrossRef]
- Aggarwal, A.N.; Agarwal, R.; Sehgal, I.S.; Dhooria, S. Adenosine deaminase for diagnosis of tuberculous pleural effusion: A systematic review and meta-analysis. PLoS ONE 2019, 14, e0213728. [Google Scholar] [CrossRef]
- Gao, L.; Wang, W.; Zhang, Y.; Hu, X.; An, J.; Li, Y.; Chen, M.; Shen, Y. Adenosine deaminase-based measurement in the differential diagnosis of pleural effusion: A multicenter retrospective study. Ther. Adv. Respir. Dis. 2023, 17, 17534666231155747. [Google Scholar] [CrossRef]
- Salmanzadeh, S.; Tavakkol, H.; Bavieh, K.; Alavi, S.M. Diagnostic Value of Serum Adenosine Deaminase (ADA) Level for Pulmonary Tuberculosis. Jundishapur J. Microbiol. 2015, 8, e21760. [Google Scholar] [CrossRef]
- Pai, M.; Dewan, P.K.; Swaminathan, S. Transforming tuberculosis diagnosis. Nat. Microbiol. 2023, 8, 756–759. [Google Scholar] [CrossRef]
Test | Target | LoD CFU/mL | Sensitivity (%) | Specificity (%) | Time to Result (h) | RIF/INH Resistance Detection | Notes | References |
---|---|---|---|---|---|---|---|---|
LoopampTM MTBC | 6 regions within MTBC DNA | N/A | ~80.9 | ~96.5 | <1 h | No | Manual assay | [119,120] |
FluoroType® MTB VER 1.0 | IS6110 | 30 | ~88.1 | ~98.9 | 3 h | No | Uses FluoroType® technology, manual/automated DNA extraction | [121,122,123] |
FluoroType® MTB VER 2.0 | IS6110 | 2.6 | ~91.6 | ~93.8 | 3 h | No | Uses FluoroType® technology, manual DNA extraction | [121,124] |
Xpert® MTB/RIF | rpoB | 131 | ~85 | ~98 | 2 h | RIF | Automated, nested qPCR | [69,125,126] |
Xpert® MTB/RIF Ultra | IS6110, IS1081, rpoB | 16 | ~87.8 | ~98.1 | <2 h | RIF | Improved version of Xpert® MTB/RIF | [69,127] |
Truenat® MTB | nrdB | 100 | ~73.3 | ~97.9 | <1 h | No | Chip-based qPCR | [128] |
Truenat® MTB Plus | nrdZ, IS6110 | 29 | ~91.7 | ~97.2 | <1 h | No | Chip-based qPCR, higher sensitivity than Truenat® MTB | [129] |
RealTime MTB | IS6110, pab | 17 | 93% (culture+), 81% (smear-negative) | 97% | ~6 h | No | Separate test available for RIF/INH resistance | [130,131] |
RealTime MTB RIF/INH | rpoB, inhA promoter, katG | 60 | 94.8 (RIF) 88.3 (INH) | 100 (RIF) 94.3 (INH) | Additional 4.5 h | RIF/INH | Carried out upon positive RealTime MTB result | [69,132] |
BD MAX™ MDR-TB | IS6110, IS1081, rpoB, inhA promoter, katG | 0.5 | 92.6 | 98.6 | <4 h | RIF/INH | Integrated MTBC and RIF/INH detection | [133] |
FluoroType® MTBDR VER 2.0 | rpoB, katG, inhA | 20 | 89.8 | 97.5 | 2.5 h | RIF/INH | Integrated MTBC and RIF/INH detection | [122,124,134] |
cobas® MTB | 16S rRNA, esx genes | 8.8 | ~93.5 | ~98. | 3.5 h | No | Different targets compared to other tests | [135,136] |
cobas® MTB-RIF/INH | rpoB, katG, inhA promoter | 182 (RIF) 27.5 (INH) | ~96.7 (RIF) ~97.4 (INH) | ~97.9 (RIF) ~99.3 (INH) | Additional 3.5 h | RIF/INH | Carried out upon cobas® MTB positive result | [136,137] |
Technique | Advantages | Disadvantages | References |
---|---|---|---|
Sputum smear microscopy (SSM) | Rapid, cost-effective, important primary diagnostic technique | Low sensitivity, cannot differentiate between live and dead bacteria, cannot differentiate between Mtb and other mycobacteria | [46,53,54,55,56,69,70,71,72,73] |
Chest radiography (CXR) | Cost-effective, shortens the period required to diagnose PTB, high sensitivity, can be enhanced by AI | Cannot differentiate between PTB and pulmonary infections caused by NTM | [74,75,76,82,83,84,85,86] |
Culture-based methods | Gold standard, identifies the pathogen, differentiates between MTBC and NTM, improved sensitivity with liquid media | Time-consuming, requires biosafety level 3 or 4 laboratories, high cost | [3,69,94,107,108,114,115] |
Nucleic acid amplification tests (NAATs) | Faster results compared to traditional methods, improved sensitivity, certain NAATs can detect antibiotic resistance, many NAATs are automated, lower LoD | Most NAATs cannot differentiate between MTBC and NTM, high cost, complexity | [69,118,119,120,121,125,128,129] |
Line-probe assays (LPAs) | Rapid results, simultaneous detection of MTBC and drug resistance, high sensitivity and specificity, identify specific genetic mutations | Potential for false results, reliance on skilled personnel, high cost | [146,147,148,149,150,151,152,153] |
Sequencing | Comprehensive information, improved accuracy, enhanced surveillance, personalized treatment, detection of drug resistance | High costs, technical challenges, time consuming, complex infrastructure requirements | [155,156,157,158,160] |
MALDI-TOF MS | Rapid and accurate identification, cost-effective, ease of use, potential for detecting drug resistance | Lower specificity and sensitivity than PCR-based methods, requires a pure culture for optimal results | [162,163,164,165,166,167,168,169] |
Biosensors | Versatility, high sensitivity, potential for drug resistance detection, point-of-care testing | Limited commercial availability, potential for interference, need for further development | [172,174] |
Interferon-gamma release assays (IGRAs) | Single visit, no BCG vaccination interference, high sensitivity for LTBI progression | More expensive, requires specialized equipment, indeterminate results possible | [182,183,184] |
Tuberculin skin test (TST) | Cost-effective, field-applicable | Requires two visits, cold chain for PPD, BCG vaccination affects specificity | [183] |
Mycobacterium tuberculosis antigen-based skin tests | Improved specificity and sensitivity compared to TST, potentially reduce TST limitations | Limited safety data for pregnant women | [182,193,199] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartolomeu-Gonçalves, G.; Souza, J.M.d.; Fernandes, B.T.; Spoladori, L.F.A.; Correia, G.F.; Castro, I.M.d.; Borges, P.H.G.; Silva-Rodrigues, G.; Tavares, E.R.; Yamauchi, L.M.; et al. Tuberculosis Diagnosis: Current, Ongoing, and Future Approaches. Diseases 2024, 12, 202. https://doi.org/10.3390/diseases12090202
Bartolomeu-Gonçalves G, Souza JMd, Fernandes BT, Spoladori LFA, Correia GF, Castro IMd, Borges PHG, Silva-Rodrigues G, Tavares ER, Yamauchi LM, et al. Tuberculosis Diagnosis: Current, Ongoing, and Future Approaches. Diseases. 2024; 12(9):202. https://doi.org/10.3390/diseases12090202
Chicago/Turabian StyleBartolomeu-Gonçalves, Guilherme, Joyce Marinho de Souza, Bruna Terci Fernandes, Laís Fernanda Almeida Spoladori, Guilherme Ferreira Correia, Isabela Madeira de Castro, Paulo Henrique Guilherme Borges, Gislaine Silva-Rodrigues, Eliandro Reis Tavares, Lucy Megumi Yamauchi, and et al. 2024. "Tuberculosis Diagnosis: Current, Ongoing, and Future Approaches" Diseases 12, no. 9: 202. https://doi.org/10.3390/diseases12090202
APA StyleBartolomeu-Gonçalves, G., Souza, J. M. d., Fernandes, B. T., Spoladori, L. F. A., Correia, G. F., Castro, I. M. d., Borges, P. H. G., Silva-Rodrigues, G., Tavares, E. R., Yamauchi, L. M., Pelisson, M., Perugini, M. R. E., & Yamada-Ogatta, S. F. (2024). Tuberculosis Diagnosis: Current, Ongoing, and Future Approaches. Diseases, 12(9), 202. https://doi.org/10.3390/diseases12090202