Protective Effects of Propolis and Chitosan Nanoparticles against Ibuprofen-Induced Hepatotoxicity in Albino Rats
Abstract
:1. Introduction
2. Materials and Method
2.1. Preparation of the Extract
2.2. Preparation of Propolis Suspension
2.3. Preparation of Chitosan–Propolis Nanoparticles
2.4. Preparation of Chitosan-Blank Nanoparticles
2.5. Measurement of Particle Size and Zeta Potential
2.6. Animals and Experimental Design
2.7. Biochemical Analysis
2.8. Statistical Analysis
3. Results
3.1. Characterization of Chitosan–Propolis Nanoparticles
3.2. Hepatic and Kidney Function
3.3. Oxidative Stress Status
3.4. Inflammation Markers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pandit, A.; Sachdeva, T.; Bafna, P. Drug-induced hepatotoxicity: A review. J. Appl. Pharm. Sci. 2012, 2, 233–243. [Google Scholar] [CrossRef]
- Ostapowicz, G.; Fontana, R.J.; Schiødt, F.V.; Larson, A.; Davern, T.J.; Han, S.H.; McCashland, T.M.; Shakil, A.O.; Hay, J.E.; Hynan, L. Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States. Ann. Intern. Med. 2002, 137, 947–954. [Google Scholar] [CrossRef] [PubMed]
- Connor, M.J.; Marshall, D.C.; Moiseenko, V.; Moore, K.; Cervino, L.; Atwood, T.; Sanghvi, P.; Mundt, A.J.; Pawlicki, T.; Recht, A. Adverse events involving radiation oncology medical devices: Comprehensive analysis of US Food and Drug Administration data, 1991 to 2015. Int. J. Radiat. Oncol. Biol. Phys. 2017, 97, 18–26. [Google Scholar] [CrossRef]
- Sarges, P.; Steinberg, J.M.; Lewis, J.H. Drug-induced liver injury: Highlights from a review of the 2015 literature. Drug Saf. 2016, 39, 801–821. [Google Scholar] [CrossRef]
- Cano, P.A.; Cifuentes, P.L.; Amariles, P. Structured literature review of hepatic toxicity caused by medicines. Rev. Colomb. Gastroenterol. 2017, 32, 337–348. [Google Scholar]
- Boelsterli, U.A. Mechanisms underlying the hepatotoxicity of nonsteroidal antiinflammatory drugs. In Drug-Induced Liver Disease; Elsevier: Amsterdam, The Netherlands, 2013; pp. 343–367. [Google Scholar]
- Bushra, R.; Aslam, N. An overview of clinical pharmacology of Ibuprofen. Oman Med. J. 2010, 25, 155. [Google Scholar] [CrossRef] [PubMed]
- Freneaux, E.; Fromenty, B.; Berson, A.; Labbe, G.; Degott, C.; Letteron, P.; Larrey, D.; Pessayre, D. Stereoselective and nonstereoselective effects of ibuprofen enantiomers on mitochondrial beta-oxidation of fatty acids. J. Pharmacol. Exp. Ther. 1990, 255, 529–535. [Google Scholar] [PubMed]
- Chapple, I. Reactive oxygen species and antioxidants in inflammatory diseases. J. Clin. Periodontol. 1997, 24, 287–296. [Google Scholar] [CrossRef]
- Jayavelu, A.; Natarajan, A.; Sundaresan, S.; Devi, K.; Senthilkumar, B. Hepatoprotective activity of Boerhavia diffusa L. (Nyctaginaceae) against ibuprofen induced hepatotoxicity in wistar albino rats. Int. J. Pharm. Res. Rev. 2013, 2, 1–8. [Google Scholar]
- Kurek-Górecka, A.; Rzepecka-Stojko, A.; Górecki, M.; Stojko, J.; Sosada, M.; Świerczek-Zięba, G. Structure and antioxidant activity of polyphenols derived from propolis. Molecules 2013, 19, 78–101. [Google Scholar] [CrossRef]
- Georgiev, V.; Ananga, A.; Tsolova, V. Recent advances and uses of grape flavonoids as nutraceuticals. Nutrients 2014, 6, 391–415. [Google Scholar] [CrossRef]
- Segueni, N.; Zellagui, A.; Moussaoui, F.; Lahouel, M.; Rhouati, S. Flavonoids from Algerian propolis. Arab. J. Chem. 2016, 9, S425–S428. [Google Scholar] [CrossRef]
- Gheflati, A.; Dehnavi, Z.; Yazdi, A.G.; Khorasanchi, Z.; Raeisi-Dehkordi, H.; Ranjbar, G. The effects of propolis supplementation on metabolic parameters: A systematic review and meta-analysis of randomized controlled clinical trials. Avicenna J. Phytomedicine 2021, 11, 551. [Google Scholar]
- Harfouch, R.M.; Mohammad, R.; Suliman, H. Antibacterial activity of Syrian propolis extract against several strains of bacteria in vitro. World J. Pharm. Pharmaceuti. Sci. 2016, 6, 42–46. [Google Scholar]
- Boufadi, Y.M.; Soubhye, J.; Riazi, A.; Rousseau, A.; Vanhaeverbeek, M.; Nève, J.; Boudjeltia, K.Z.; Van Antwerpen, P. Characterization and antioxidant properties of six Algerian propolis extracts: Ethyl acetate extracts inhibit myeloperoxidase activity. Int. J. Mol. Sci. 2014, 15, 2327–2345. [Google Scholar] [CrossRef]
- Machado, B.; Pulcino, T.N.; Silva, A.L.; Tadeu, D.; Melo RG, S.; Mendonça, I.G. Propolis as an alternative in prevention and control of dental cavity. Immunity 2017, 19, 24. [Google Scholar] [CrossRef]
- Orsatti, C.L.; Sforcin, J.M. Propolis immunomodulatory activity on TLR-2 and TLR-4 expression by chronically stressed mice. Nat. Prod. Res. 2012, 26, 446–453. [Google Scholar] [CrossRef]
- Yasar, M.; Savranlar, Y.; Karaman, H.; Sagit, M.; Silici, S.; Ozcan, I. Effects of propolis in an experimental rat model of allergic rhinitis. Am. J. Otolaryngol. 2016, 37, 287–293. [Google Scholar] [CrossRef]
- Boufadi, Y.M.; Soubhye, J.; Nève, J.; Van Antwerpen, P.; Riazi, A. Antimicrobial effects of six Algerian propolis extracts. Int. J. Food Sci. Technol. 2016, 51, 2613–2620. [Google Scholar] [CrossRef]
- Soltani, E.K.; Cerezuela, R.; Charef, N.; Mezaache-Aichour, S.; Esteban, M.A.; Zerroug, M.M. Algerian propolis extracts: Chemical composition, bactericidal activity and in vitro effects on gilthead seabream innate immune responses. Fish Shellfish Immunol. 2017, 62, 57–67. [Google Scholar] [CrossRef]
- El-Guendouz, S.; Al-Waili, N.; Aazza, S.; Elamine, Y.; Zizi, S.; Al-Waili, T.; Al-Waili, A.; Lyoussi, B. Antioxidant and diuretic activity of co-administration of Capparis spinosa honey and propolis in comparison to furosemide. Asian Pac. J. Trop. Med. 2017, 10, 974–980. [Google Scholar] [CrossRef]
- Elsonbaty, S.; Moawad, F.; Abdelghaffar, M. Antioxidants and hepatoprotective effects of chitosan nanoparticles against hepatotoxicity induced in rats. Benha Vet. Med. J. 2019, 36, 252–261. [Google Scholar]
- Neimert-Andersson, T.; Hällgren, A.-C.; Andersson, M.; Langebäck, J.; Zettergren, L.; Nilsen-Nygaard, J.; Draget, K.I.; Van Hage, M.; Lindberg, A.; Gafvelin, G. Improved immune responses in mice using the novel chitosan adjuvant ViscoGel, with a Haemophilus influenzae type b glycoconjugate vaccine. Vaccine 2011, 29, 8965–8973. [Google Scholar] [CrossRef]
- Ong, T.H.; Chitra, E.; Ramamurthy, S.; Siddalingam, R.P.; Yuen, K.H.; Ambu, S.P.; Davamani, F. Chitosan-propolis nanoparticle formulation demonstrates anti-bacterial activity against Enterococcus faecalis biofilms. PLoS ONE 2017, 12, e0174888. [Google Scholar]
- Jeon, T.I.; Hwang, S.G.; Park, N.G.; Jung, Y.R.; Im Shin, S.; Choi, S.D.; Park, D.K. Antioxidative effect of chitosan on chronic carbon tetrachloride induced hepatic injury in rats. Toxicology 2003, 187, 67–73. [Google Scholar] [CrossRef]
- Nguyen, S.; Hisiger, S.; Jolicoeur, M.; Winnik, F.M.; Buschmann, M.D. Fractionation and characterization of chitosan by analytical SEC and 1H NMR after semi-preparative SEC. Carbohydr. Polym. 2009, 75, 636–645. [Google Scholar] [CrossRef]
- Li, Y.; Shang, W.; Liang, X.; Zeng, C.; Liu, M.; Wang, S.; Li, H.; Tian, J. The diagnosis of hepatic fibrosis by magnetic resonance and near-infrared imaging using dual-modality nanoparticles. RSC Adv. 2018, 8, 6699–6708. [Google Scholar] [CrossRef]
- Parolia, A.; Kumar, H.; Ramamurthy, S.; Davamani, F.; Pau, A. Effectiveness of chitosan-propolis nanoparticle against Enterococcus faecalis biofilms in the root canal. BMC Oral Health 2020, 20, 339. [Google Scholar] [CrossRef]
- EL-Rahmany, N.; Khalil, F.A.E.-H.; Ahmed, A.A.; Kamel, E.A. The Ameliorative Effect of Propolis Extract (bee glue) Against Oxidative Damage Induced by Methotrexate in Rats. J. Sci. Res. Sci. 2015, 32 Pt 2, 232–249. [Google Scholar] [CrossRef]
- Sugiyama, K.; He, P.; Wada, S.; Saeki, S. Teas and other beverages suppress D-galactosamine-induced liver injury in rats. J. Nutr. 1999, 129, 1361–1367. [Google Scholar] [CrossRef]
- White, R. Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology 1979, 99, 410–412. [Google Scholar] [CrossRef]
- Koukaras, E.N.; Papadimitriou, S.A.; Bikiaris, D.N.; Froudakis, G.E. Insight on the formation of chitosan nanoparticles through ionotropic gelation with tripolyphosphate. Mol. Pharm. 2012, 9, 2856–2862. [Google Scholar] [CrossRef]
- Cho, Y.; Shi, R.; Ben Borgens, R. Chitosan nanoparticle-based neuronal membrane sealing and neuroprotection following acrolein-induced cell injury. J. Biol. Eng. 2010, 4, 2. [Google Scholar] [CrossRef]
- Bethesda, L. Clinical and Research Information on Drug-Induced liver injury [Internet]. Natl. Inst. Diabetes Dig. Kidney Dis. 2012. [Google Scholar]
- Betteridge, D.J. What is oxidative stress? Metabolism 2000, 49, 3–8. [Google Scholar] [CrossRef]
- Takemoto, K.; Hatano, E.; Iwaisako, K.; Takeiri, M.; Noma, N.; Ohmae, S.; Toriguchi, K.; Tanabe, K.; Tanaka, H.; Seo, S. Necrostatin-1 protects against reactive oxygen species (ROS)-induced hepatotoxicity in acetaminophen-induced acute liver failure. FEBS Open Bio. 2014, 4, 777–787. [Google Scholar] [CrossRef]
- Zoubek, M.E.; Lucena, M.I.; Andrade, R.J.; Stephens, C. Systematic review: Ibuprofen-induced liver injury. Aliment. Pharmacol. Ther. 2020, 51, 603–611. [Google Scholar] [CrossRef]
- Farag, A.G.; Elhalwagy, M.E.; Farid, H.E. Effect of ginger supplementation on developmental toxicity induced by fenitrothion insecticide and/or lead in albino rats. Pestic. Biochem. Physiol. 2010, 97, 267–274. [Google Scholar] [CrossRef]
- Wallace, A.D. Toxic endpoints in the study of human exposure to environmental chemicals. Prog. Mol. Biol. Transl. Sci. 2012, 112, 89–115. [Google Scholar]
- Soudani, N.; Amara, I.B.; Sefi, M.; Boudawara, T.; Zeghal, N. Effects of selenium on chromium (VI)-induced hepatotoxicity in adult rats. Exp. Toxicol. Pathol. 2011, 63, 541–548. [Google Scholar] [CrossRef]
- Beal, M.F. Oxidatively modified proteins in aging and disease. Free Radic. Biol. Med. 2002, 32, 797–803. [Google Scholar] [CrossRef]
- Olry, A.; Meunier, L.; Délire, B.; Larrey, D.; Horsmans, Y.; Le Louet, H. Drug-Induced Liver Injury and COVID-19 Infection: The Rules Remain the Same; Springer: Berlin/Heidelberg, Germany, 2020; Volume 43, pp. 615–617. [Google Scholar]
- Zhang, R.; Wang, Q.; Yang, J. Impact of liver functions by repurposed drugs for COVID-19 treatment. J. Clin. Transl. Hepatol. 2022, 10, 748. [Google Scholar] [CrossRef]
- James, L.P.; Mayeux, P.R.; Hinson, J.A. Acetaminophen-induced hepatotoxicity. Drug Metab. Dispos. 2003, 31, 1499–1506. [Google Scholar] [CrossRef]
- Lancaster, E.M.; Hiatt, J.R.; Zarrinpar, A. Acetaminophen hepatotoxicity: An updated review. Arch. Toxicol. 2015, 89, 193–199. [Google Scholar] [CrossRef]
- Du, K.; Ramachandran, A.; Jaeschke, H. Oxidative stress during acetaminophen hepatotoxicity: Sources, pathophysiological role and therapeutic potential. Redox Biol. 2016, 10, 148–156. [Google Scholar] [CrossRef]
- Xiong, F.; Guan, Y.-S. Cautiously using natural medicine to treat liver problems. World J. Gastroenterol. 2017, 23, 3388. [Google Scholar] [CrossRef]
- Bhadauria, M.; Nirala, S.K.; Shukla, S. Multiple treatment of propolis extract ameliorates carbon tetrachloride induced liver injury in rats. Food Chem. Toxicol. 2008, 46, 2703–2712. [Google Scholar] [CrossRef]
- Chaa, S.; Boufadi, M.Y.; Keddari, S.; Benchaib, A.H.; Soubhye, J.; Van Antwerpen, P.; Riazi, A. Chemical composition of propolis extract and its effects on epirubicin-induced hepatotoxicity in rats. Rev. Bras. Farmacogn. 2019, 29, 294–300. [Google Scholar] [CrossRef]
- Çetin, A.; Kaynar, L.; Eser, B.; Karadağ, C.; Sarayman, B.; Öztürk, A.; Koçyiğit, İ.; Hacıoğlu, S.K.; Çiçek, B.; Silici, S. Beneficial effects of propolis on methotrexate-induced liver injury in rats. Acta Oncol. Turc. 2011, 44, 18–23. [Google Scholar]
- Eraslan, G.; Kanbur, M.; Silici, S. Evaluation of propolis effects on some biochemical parameters in rats treated with sodium fluoride. Pestic. Biochem. Physiol. 2007, 88, 273–283. [Google Scholar] [CrossRef]
- Rampino, A.; Borgogna, M.; Blasi, P.; Bellich, B.; Cesàro, A. Chitosan nanoparticles: Preparation, size evolution and stability. Int. J. Pharm. 2013, 455, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Ravikumar, P.; Menon, J.U.; Punnakitikashem, P.; Gyawali, D.; Togao, O.; Takahashi, M.; Zhang, J.; Ye, J.; Moe, O.W.; Nguyen, K.T. Nanoparticle facilitated inhalational delivery of erythropoietin receptor cDNA protects against hyperoxic lung injury. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 811–821. [Google Scholar] [CrossRef] [PubMed]
- Hua, S.; Marks, E.; Schneider, J.J.; Keely, S. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: Selective targeting to diseased versus healthy tissue. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 1117–1132. [Google Scholar] [CrossRef] [PubMed]
- Sandri, G.; Rossi, S.; Bonferoni, M.C.; Ferrari, F.; Zambito, Y.; Di Colo, G.; Caramella, C. Buccal penetration enhancement properties of N-trimethyl chitosan: Influence of quaternization degree on absorption of a high molecular weight molecule. Int. J. Pharm. 2005, 297, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, M.; Yagi, K.; Iwakawa, S.; Hirai, M. Chitosan induces apoptosis via caspase-3 activation in bladder tumor cells. Jpn. J. Cancer Res. 2001, 92, 459–466. [Google Scholar] [CrossRef]
- Ozcelik, E.; Uslu, S.; Erkasap, N.; Karimi, H. Protective effect of chitosan treatment against acetaminophen-induced hepatotoxicity. Kaohsiung J. Med. Sci. 2014, 30, 286–290. [Google Scholar] [CrossRef] [PubMed]
- Anraku, M.; Michihara, A.; Yasufuku, T.; Akasaki, K.; Tsuchiya, D.; Nishio, H.; Maruyama, T.; Otagiri, M.; Maezaki, Y.; Kondo, Y. The antioxidative and antilipidemic effects of different molecular weight chitosans in metabolic syndrome model rats. Biol. Pharm. Bull. 2010, 33, 1994–1998. [Google Scholar] [CrossRef]
- Walsh, S.B.; Dolden, T.A.; Moores, G.D.; Kristensen, M.; Lewis, T.; Devonshire, A.L.; Williamson, M.S. Identification and characterization of mutations in housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance. Biochem. J. 2001, 359, 175–181. [Google Scholar] [CrossRef]
- Dawoud, S.F.; Al-Akra, T.M.; Zedan, A.M. Hepatoprotective effects of chitosan and chitosan nanoparticles against biochemical, genetic, and histological disorders induced by the toxicity of emamectin benzoate. Rep. Biochem. Mol. Biol. 2021, 10, 506. [Google Scholar]
Formulation | Average Particle Size (nm) | Zeta Potential (mV) | Polydispersity Index (PDI) |
---|---|---|---|
Chitosan-blank nanoparticles | 774.3 ± 89.88 | 35.2 ± 0.874 | 0.438 ± 0.01 |
Chitosan–propolis nanoparticles | 699.1 ± 75.67 | 43.0 ± 1.07 | 0.236 ± 0.01 |
Group No. | G1 | G2 | G3 | G4 | G5 | p |
---|---|---|---|---|---|---|
Parameter | Mean ± SE | |||||
ALT (U/L) | 27.78 ± 0.57 a | 44.75 ± 0.79 c | 34.01 ± 0.25 b | 33.29 ± 0.99 b | 32.81 ± 0.97 b | <0.001 |
AST (U/L) | 43.67 ± 1.5 b | 60.73 ± 1.52 c | 43.68 ± 1.18 c | 43.60 ± 1.02 a | 37.92 ± 1.02 ab | <0.001 |
ALP (U/L) | 184.64 ± 1.54 c | 283.73 ± 0.48 e | 180.00 ± 1.90 b | 191.91 ± 1.05 a | 149.00 ± 2.25 d | <0.001 |
Albumin (mg/mL) | 4.53 ± 0.06 b | 3.63 ± 0.11 a | 4.52 ± 0.10 b | 4.50 ± 0.24 b | 4.56 ± 0.23 b | <0.002 |
GGT (U/L) | 1.08 ± 0.04 c | 3.75 ± 0.18 d | 0.52 ± 0.04 a | 0.80 ± 0.04 a | 0.65 ± 0.02 b | <0.001 |
T. bil (mg/dL) | 0.12 ± 0.02 a | 0.38 ± 0.04 b | 0.33 ± 0.06 b | 0.33 ± 0.03 b | 0.35 ± 0.02 b | <0.001 |
D. bil (mg/dL) | 0.015 ± 0.002 a | 0.025 ± 0.002 b | 0.015 ± 0.002 a | 0.016 ± 0.002 a | 0.013 ± 0.002 a | <0.001 |
Total protein (mg/dL) | 6.52 ± 0.14 cd | 4.58 ± 0.06 a | 5.99 ± 0.14 bc | 6.85 ± 0.29 b | 5.86 ± 0.25 d | <0.001 |
Globulins | 1.98 ± 0.17 c | 0.82 ± 0.04 a | 1.41 ± 0.06 b | 2.35 ± 0.09 b | 1.31 ± 0.04 d | <0.001 |
Creatinine (mg/dL) | 0.47 ± 0.005 a | 0.65 ± 0.018 d | 0.58 ± 0.004 c | 0.54 ± 0.013 bc | 0.57 ± 0.005 b | <0.001 |
BUN (mg/dL) | 31.00 ± 0.37 c | 38.45 ± 0.68 d | 29.73 ± 0.23 bc | 24.43 ± 0.41 b | 28.67 ± 0.86 a | <0.001 |
Phosphorus (mg/dL) | 7.09 ± 0.19 a | 9.71 ± 0.20 c | 7.76 ± 0.09 b | 6.75 ± 0.08 b | 7.59 ± 0.13 a | <0.001 |
Sodium (MEq/L) | 124.55 ± 1.37 b | 109.17 ± 2.22 a | 129.66 ± 2.7 bc | 132.16 ± 2.12 c | 132.82 ± 1.52 c | <0.001 |
Potassium (MEq/L) | 0.98 ± 0.02 b | 0.64 ± 0.04 a | 1.43 ± 0.11 c | 3.40 ± 0.18 b | 1.10 ± 0.01 d | <0.001 |
Uric acid (mg/dL) | 0.48 ± 0.02 a | 0.95 ± 0.01 d | 0.66 ± 0.02 c | 0.56 ± 0.02 ab | 0.53 ± 0.02 b | <0.001 |
Group No. | G1 | G2 | G3 | G4 | G5 | p |
---|---|---|---|---|---|---|
Parameter | Mean ± SE | |||||
GSH (mg/g) | 271.43 ± 21.54 c | 164.7 ± 14.14 d | 558.97 ± 32.68 b | 320.63 ± 9.06 c | 742.26 ± 11.48 a | <0.001 |
GST (U/mg) | 45.74 ± 2.66 a | 25.4 ± 1.19 c | 45.18 ± 2.73 a | 37.21 ± 1.25 b | 43.31 ± 1.13 a | <0.001 |
NO (µmol/L) | 0.03 ± 0.004 d | 0.17 ± 0.008 a | 0.06 ± 0.008 c | 0.08 ± 0.004 c | 0.14 ± 0.012 b | <0.001 |
SOD (U/mg) | 140.15 ± 2.80 b | 39.33 ± 2.02 e | 165.52 ± 0.89 a | 77.92 ± 2.67 d | 87.7 ± 1.52 c | <0.001 |
MDA (nmol/g) | 88.03 ± 0.99 b | 103.55 ± 3.39 a | 40.98 ± 2.34 d | 58.74 ± 2.75 c | 82.72 ± 4.53 b | <0.001 |
Group No. | G1 | G2 | G3 | G4 | G5 | p |
---|---|---|---|---|---|---|
Parameter | Mean ± SE | |||||
IL-6 (pg/mg) | 30.36 ± 1.34 b | 14.66 ± 0.39 d | 22.98 ± 1.00 c | 23.13 ± 1.12 c | 42.3 ± 1.98 a | <0.001 |
IL-1B (pg/mg) | 24.19 ± 1.41 b | 32.94 ± 0.67 a | 4.07 ± 0.27 d | 12.74 ± 0.54 c | 12.42 ± 0.38 c | <0.001 |
BCl-2 (ng/g) | 121.99 ± 0.41 c | 11.9 ± 0.53 a | 165.74 ± 2.76 b | 103.39 ± 0.25 d | 170.8 ± 1.76 a | <0.001 |
Nf-kb (pg/mg) | 5.22 ± 0.10 b | 7.1 ± 0.22 a | 4.54 ± 0.18 c | 3.68 ± 0.22 d | 2.83 ± 0.26 e | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AlKandari, F.M.; Mohamed, H.S.; Ahmed, S.A.; Mahmoud, B.; Mahmoud, A.M. Protective Effects of Propolis and Chitosan Nanoparticles against Ibuprofen-Induced Hepatotoxicity in Albino Rats. Diseases 2024, 12, 49. https://doi.org/10.3390/diseases12030049
AlKandari FM, Mohamed HS, Ahmed SA, Mahmoud B, Mahmoud AM. Protective Effects of Propolis and Chitosan Nanoparticles against Ibuprofen-Induced Hepatotoxicity in Albino Rats. Diseases. 2024; 12(3):49. https://doi.org/10.3390/diseases12030049
Chicago/Turabian StyleAlKandari, Fajer M., Hussein S. Mohamed, Sayed A. Ahmed, Basant Mahmoud, and Asmaa M. Mahmoud. 2024. "Protective Effects of Propolis and Chitosan Nanoparticles against Ibuprofen-Induced Hepatotoxicity in Albino Rats" Diseases 12, no. 3: 49. https://doi.org/10.3390/diseases12030049
APA StyleAlKandari, F. M., Mohamed, H. S., Ahmed, S. A., Mahmoud, B., & Mahmoud, A. M. (2024). Protective Effects of Propolis and Chitosan Nanoparticles against Ibuprofen-Induced Hepatotoxicity in Albino Rats. Diseases, 12(3), 49. https://doi.org/10.3390/diseases12030049