The Association between Diagnosis-to-Ablation Time and the Recurrence of Atrial Fibrillation: A Retrospective Cohort Study
Abstract
:1. Background
2. Materials and Methods
2.1. Study Design and Cohort
2.2. Variables
2.3. Statistical Analysis
3. Results
3.1. Cohort Characteristics
3.2. Predictors of AF Recurrence
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miyasaka, Y.; Barnes, M.E.; Gersh, B.J.; Cha, S.S.; Bailey, K.R.; Abhayaratna, W.P.; Seward, J.B.; Tsang TS, M. Secular trends in incidence of atrial fibrillation in Olmsted County, Minnesota, 1980 to 2000, and implications on the projections for future prevalence. Circulation 2006, 114, 119–125. [Google Scholar] [CrossRef]
- Schnabel, R.B.; Yin, X.; Gona, P.; Larson, M.G.; Beiser, A.S.; McManus, D.D.; Newton-Cheh, C.; Lubitz, S.A.; Magnani, J.W.; Ellinor, P.T.; et al. 50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: A cohort study. Lancet 2015, 386, 154–162. [Google Scholar] [CrossRef]
- Dai, H.; Zhang, Q.; Much, A.A.; Maor, E.; Segev, A.; Beinart, R.; Adawi, S.; Lu, Y.; Bragazzi, N.L.; Wu, J. Global, regional, and national prevalence, incidence, mortality, and risk factors for atrial fibrillation, 1990–2017: Results from the Global Burden of Disease Study 2017. Eur. Heart J. Qual. Care Clin. Outcomes 2020, 7, 574–582. [Google Scholar] [CrossRef] [PubMed]
- Stewart, S.; Hart, C.L.; Hole, D.J.; McMurray, J.J.V. A population-based study of the long-term risks associated with atrial fibrillation: 20-year follow-up of the Renfrew/Paisley study. Am. J. Med. 2002, 113, 359–364. [Google Scholar] [CrossRef]
- Ruddox, V.; Sandven, I.; Munkhaugen, J.; Skattebu, J.; Edvardsen, T.; Otterstad, J.E. Atrial fibrillation and the risk for myocardial infarction, all-cause mortality and heart failure: A systematic review and meta-analysis. Eur. J. Prev. Cardiol. 2017, 24, 1555–1566. [Google Scholar] [CrossRef]
- McBride, D.; Mattenklotz, A.M.; Willich, S.N.; Brüggenjürgen, B. The costs of care in atrial fibrillation and the effect of treatment modalities in Germany. Value Health J. Int. Soc. Pharmacoecon. Outcomes Res. 2009, 12, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Ball, J.; Carrington, M.J.; McMurray, J.J.V.; Stewart, S. Atrial fibrillation: Profile and burden of an evolving epidemic in the 21st century. Int. J. Cardiol. 2013, 167, 1807–1824. [Google Scholar] [CrossRef]
- Cotté, F.-E.; Chaize, G.; Gaudin, A.-F.; Samson, A.; Vainchtock, A.; Fauchier, L. Burden of stroke and other cardiovascular complications in patients with atrial fibrillation hospitalized in France. Europace 2016, 18, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Stewart, S.; Murphy, N.F.; Walker, A.; McGuire, A.; McMurray, J.J.V. Cost of an emerging epidemic: An economic analysis of atrial fibrillation in the UK. Heart 2004, 90, 286–292. [Google Scholar] [CrossRef]
- Packer, D.L.; Mark, D.B.; Robb, R.A.; Monahan, K.H.; Bahnson, T.D.; Poole, J.E.; Noseworthy, P.A.; Rosenberg, Y.D.; Jeffries, N.; Mitchell, L.B.; et al. Effect of Catheter Ablation vs Antiarrhythmic Drug Therapy on Mortality, Stroke, Bleeding, and Cardiac Arrest Among Patients with Atrial Fibrillation: The CABANA Randomized Clinical Trial. JAMA 2019, 321, 1261–1274. [Google Scholar] [CrossRef]
- Pallisgaard, J.L.; Gislason, G.H.; Hansen, J.; Johannessen, A.; Torp-Pedersen, C.; Rasmussen, P.V.; Hansen, M.L. Temporal Trends in Atrial Fibrillation Recurrence Rates after Ablation between 2005 and 2014: A Nationwide Danish Cohort Study. Eur. Heart J. 2018, 39, 442–449. [Google Scholar] [CrossRef]
- Congrete, S.; Bintvihok, M.; Thongprayoon, C.; Bathini, T.; Boonpheng, B.; Sharma, K.; Chokesuwattanaskul, R.; Srivali, N.; Tanawuttiwat, T.; Cheungpasitporn, W. Effect of Obstructive Sleep Apnea and Its Treatment of Atrial Fibrillation Recurrence after Radiofrequency Catheter Ablation: A Meta-Analysis. J. Evid.-Based Med. 2018, 11, 145–151. [Google Scholar] [CrossRef]
- Xia, Y.; Li, X.-F.; Liu, J.; Yu, M.; Fang, P.-H.; Zhang, S. The Influence of Metabolic Syndrome on Atrial Fibrillation Recurrence: Five-Year Outcomes after a Single Cryoballoon Ablation Procedure. J. Geriatr. Cardiol. 2021, 18, 1019–1028. [Google Scholar] [CrossRef]
- Kisheva, A.; Yotov, Y. Risk Factors for Recurrence of Atrial Fibrillation. Anatol. J. Cardiol. 2021, 25, 338–345. [Google Scholar] [CrossRef]
- De Greef, Y.; Schwagten, B.; Chierchia, G.B.; de Asmundis, C.; Stockman, D.; Buysschaert, I. Diagnosis-to-Ablation Time as a Predictor of Success: Early Choice for Pulmonary Vein Isolation and Long-Term Outcome in Atrial Fibrillation: Results from the Middelheim-PVI Registry. Europace 2018, 20, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Hussein, A.A.; Saliba, W.I.; Barakat, A.; Bassiouny, M.; Chamsi-Pasha, M.; Al-Bawardy, R.; Hakim, A.; Tarakji, K.; Baranowski, B.; Cantillon, D.; et al. Radiofrequency Ablation of Persistent Atrial Fibrillation: Diagnosis-to-Ablation Time, Markers of Pathways of Atrial Remodeling, and Outcomes. Circ. Arrhythmia Electrophysiol. 2016, 9, e003669. [Google Scholar] [CrossRef]
- Haïssaguerre, M.; Jaïs, P.; Shah, D.C.; Takahashi, A.; Hocini, M.; Quiniou, G.; Garrigue, S.; Le Mouroux, A.; Le Métayer, P.; Clémenty, J. Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins. N. Engl. J. Med. 1998, 339, 659–666. [Google Scholar] [CrossRef]
- Andrade, J.; Khairy, P.; Dobrev, D.; Nattel, S. The Clinical Profile and Pathophysiology of Atrial Fibrillation: Relationships among Clinical Features, Epidemiology, and Mechanisms. Circ. Res. 2014, 114, 1453–1468. [Google Scholar] [CrossRef] [PubMed]
- Platonov, P.G. Atrial Fibrosis: An Obligatory Component of Arrhythmia Mechanisms in Atrial Fibrillation? J. Geriatr. Cardiol. 2017, 14, 233–237. [Google Scholar] [CrossRef]
- Iwasaki, Y.; Nishida, K.; Kato, T.; Nattel, S. Atrial Fibrillation Pathophysiology: Implications for Management. Circulation 2011, 124, 2264–2274. [Google Scholar] [CrossRef] [PubMed]
- Fetsch, T.; Bauer, P.; Engberding, R.; Koch, H.P.; Lukl, J.; Meinertz, T.; Oeff, M.; Seipel, L.; Trappe, H.J.; Treese, N.; et al. Prevention of atrial fibrillation after cardioversion: Results of the PAFAC trial. Eur. Heart J. 2004, 25, 1385–1394. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, H.; An, Y.; Ikeda, S.; Aono, Y.; Doi, K.; Ishii, M.; Iguchi, M.; Masunaga, N.; Esato, M.; Tsuji, H.; et al. Progression from Paroxysmal to Sustained Atrial Fibrillation Is Associated with Increased Adverse Events. Stroke 2018, 49, 2301–2308. [Google Scholar] [CrossRef] [PubMed]
- Proietti, R.; Hadjis, A.; AlTurki, A.; Thanassoulis, G.; Roux, J.-F.; Verma, A.; Healey, J.S.; Bernier, M.L.; Birnie, D.; Nattel, S.; et al. A Systematic Review on the Progression of Paroxysmal to Persistent Atrial Fibrillation: Shedding New Light on the Effects of Catheter Ablation. JACC Clin. Electrophysiol. 2015, 1, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Andrade, J.G.; Deyell, M.W.; Macle, L.; Wells, G.A.; Bennett, M.; Essebag, V.; Champagne, J.; Roux, J.-F.; Yung, D.; Skanes, A.; et al. Progression of Atrial Fibrillation after Cryoablation or Drug Therapy. N. Engl. J. Med. 2023, 388, 105–116. [Google Scholar] [CrossRef]
- Andrade, J.G.; Turgeon, R.D.; Macle, L.; Deyell, M.W. Cryoablation or Drug Therapy for Initial Treatment of Atrial Fibrillation. Eur. Cardiol. Rev. 2022, 17, e10. [Google Scholar] [CrossRef] [PubMed]
- Wazni, O.M.; Dandamudi, G.; Sood, N.; Hoyt, R.; Tyler, J.; Durrani, S.; Niebauer, M.; Makati, K.; Halperin, B.; Gauri, A.; et al. Cryoballoon Ablation as Initial Therapy for Atrial Fibrillation. N. Engl. J. Med. 2021, 384, 316–324. [Google Scholar] [CrossRef]
- Kalman, J.M.; Al-Kaisey, A.M.; Parameswaran, R.; Hawson, J.; Anderson, R.D.; Lim, M.; Chieng, D.; Joseph, S.A.; McLellan, A.; Morton, J.B.; et al. Impact of early vs. delayed atrial fibrillation catheter ablation on atrial arrhythmia recurrences. Eur. Heart J. 2023, 44, 2447–2454. [Google Scholar] [CrossRef]
- Chew, D.S.; Black-Maier, E.; Loring, Z.; Noseworthy, P.A.; Packer, D.L.; Exner, D.V.; Mark, D.B.; Piccini, J.P. Diagnosis-to-Ablation Time and Recurrence of Atrial Fibrillation Following Catheter Ablation. Circ. Arrhythmia Electrophysiol. 2020, 13, e008128. [Google Scholar] [CrossRef]
- Verma, A.; Wazni, O.M.; Marrouche, N.F.; Martin, D.O.; Kilicaslan, F.; Minor, S.; Schweikert, R.A.; Saliba, W.; Cummings, J.; Burkhardt, J.D.; et al. Pre-existent left atrial scarring in patients undergoing pulmonary vein antrum isolation: An independent predictor of procedural failure. J. Am. Coll. Cardiol. 2005, 45, 285–292. [Google Scholar] [CrossRef]
- Marrouche, N.F.; Wilber, D.; Hindricks, G.; Jais, P.; Akoum, N.; Marchlinski, F.; Kholmovski, E.; Burgon, N.; Hu, N.; Mont, L.; et al. Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: The DECAAF study. JAMA 2014, 311, 498–506. [Google Scholar] [CrossRef]
- Chelu, M.G.; King, J.B.; Kholmovski, E.G.; Ma, J.; Gal, P.; Marashly, Q.; AlJuaid, M.A.; Kaur, G.; Silver, M.A.; Johnson, K.A.; et al. Atrial Fibrosis by Late Gadolinium Enhancement Magnetic Resonance Imaging and Catheter Ablation of Atrial Fibrillation: 5-Year Follow-Up Data. J. Am. Heart Assoc. 2018, 7, e006313. [Google Scholar] [CrossRef]
- Bunch, T.J.; May, H.T.; Bair, T.L.; Johnson, D.L.; Weiss, J.P.; Crandall, B.G.; Osborn, J.S.; Anderson, J.L.; Muhlestein, J.B.; Lappe, D.L.; et al. Increasing time between first diagnosis of atrial fibrillation and catheter ablation adversely affects long-term outcomes. Heart Rhythm 2013, 10, 1257–1262. [Google Scholar] [CrossRef]
- Kirchhof, P.; Camm, A.J.; Goette, A.; Brandes, A.; Eckardt, L.; Elvan, A.; Fetsch, T.; van Gelder, I.C.; Haase, D.; Haegeli, L.M.; et al. Early Rhythm-Control Therapy in Patients with Atrial Fibrillation. N. Engl. J. Med. 2020, 383, 1305–1316. [Google Scholar] [CrossRef]
- Kawaji, T.; Shizuta, S.; Yamagami, S.; Aizawa, T.; Komasa, A.; Yoshizawa, T.; Kato, M.; Yokomatsu, T.; Miki, S.; Ono, K.; et al. Early choice for catheter ablation reduced readmission in management of atrial fibrillation: Impact of diagnosis-to-ablation time. Int. J. Cardiol. 2019, 291, 69–76. [Google Scholar] [CrossRef]
- Scherr, D.; Khairy, P.; Miyazaki, S.; Aurillac-Lavignolle, V.; Pascale, P.; Wilton, S.B.; Ramoul, K.; Komatsu, Y.; Roten, L.; Jadidi, A.; et al. Five-year outcome of catheter ablation of persistent atrial fibrillation using termination of atrial fibrillation as a procedural endpoint. Circ. Arrhythmia Electrophysiol. 2015, 8, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Phlips, T.; Taghji, P.; El Haddad, M.; Wolf, M.; Knecht, S.; Vandekerckhove, Y.; Tavernier, R.; Duytschaever, M. Improving procedural and one-year outcome after contact force-guided pulmonary vein isolation: The role of interlesion distance, ablation index, and contact force variability in the ‘CLOSE’-protocol. Europace 2018, 20, f419–f427. [Google Scholar] [CrossRef] [PubMed]
- Okamatsu, H.; Koyama, J.; Sakai, Y.; Negishi, K.; Hayashi, K.; Tsurugi, T.; Tanaka, Y.; Nakao, K.; Sakamoto, T.; Okumura, K. High-power application is associated with shorter procedure time and higher rate of first-pass pulmonary vein isolation in ablation index-guided atrial fibrillation ablation. J. Cardiovasc. Electrophysiol. 2019, 30, 2751–2758. [Google Scholar] [CrossRef] [PubMed]
Patient Characteristics | Mean (SD)/% | Mean (SD)/% | Mean (SD)/% | p |
---|---|---|---|---|
All | DAT < 2 Years | DAT > 2 Years | ||
Age (years) | 54.3 (11.7) | 49.1 (12.4) | 57.2 (10.3) | 0.01 |
BMI | 28.5 (4.5) | 29 (4.3) | 28.5 (4.6) | 0.9 |
LAVI (mL/m2) | 37.2 (12.7) | 34.3 (8.9) | 38.8 (14.2) | 0.08 |
LAV (mL) | 75.8 (26.7) | 70.34 (18.4) | 78.8 (30.1) | 0.11 |
LVEF (%) | 54.9 (8.2) | 57.1 (5.6) | 53.7 (9.1) | 0.04 |
DAT (years) | 4.4 (3.3) | 1.35 (0.5) | 6.2 (2.9) | 0.00 |
Time to recurrence (months) | 15.4 (14.8) | 15.6 (10.5) | 10.2 (6.7) | 0.03 |
Male | 57.5% | 57% | 57.3% | 1.00 |
HTN | 47.2% | 39% | 51% | 0.31 |
IHD | 7.5% | 2.6% | 10.2% | 0.25 |
HF | 28.3% | 26% | 29% | 0.82 |
Dyslipidemia | 56.6% | 47% | 61% | 0.16 |
Type II Diabetes | 12.3% | 15.7% | 10.2% | 0.53 |
OSA | 33% | 37% | 31% | 0.66 |
Smoking | 17% | 18.4% | 16.1% | 0.79 |
Tachycardiomyopathy | 7.4% | 18% | 26.4% | 0.47 |
PsAF | 34% | 31.5% | 35.2% | 0.83 |
Continuous Variables | No Recurrence Group | Recurrence Group | p-Value |
---|---|---|---|
Age (years) | 53.1 (11.7) | 55.5 (11.8) | 0.27 |
BMI | 28.13 (443) | 28.9 (4.7) | 0.29 |
CHA2DS2Vasc | 1.1 (1.3) | 1.7 (1.3) | 0.004 |
Left atrial volume indexed | 31.9 (7.72) | 42.05 (14.40) | <0.0001 |
LVEF | 56.8 (6.4) | 53.3 (9.3) | 0.009 |
DAT (years) | 3.99 (3.5) | 4.9 (3.06) | 0.04 |
Categorical Variables | Odds Ratio | CI | p-Value |
---|---|---|---|
Male sex | 0.96 | [0.4;2.0] | 0.5 |
Hypertension | 2.7 | [1.2;6.1] | 0.009 |
Ischemic heart disease | 0.88 | [0.2;3.7] | 0.57 |
Heart failure | 1.8 | [0.7;3.6] | 0.12 |
Type 2 diabetes | 3.4 | [0.8;13.1] | 0.057 |
Obstructive sleep apnea | 3.2 | [1.3;7.7] | 0.006 |
Persistent AF | 2.85 | [1.2;6.7] | 0.012 |
DAT > 1 | 3 | [1.1;8.1] | 0.024 |
DAT > 2 | 2.32 | [1.0;5.2] | 0.03 |
DAT > 4 | 1.7 | [0.8;3.8] | 0.1 |
Variables | B | SE | Wald | df | Sig. | EXP (B) | 95.0% CI for EXP (B) | |
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
Left atrium volume indexed | 0.028 | 0.010 | 7.253 | 1 | 0.007 | 1.028 | 1.008 | 1.049 |
EF | −0.001 | 0.017 | 0.006 | 1 | 0.938 | 0.999 | 0.966 | 1.033 |
AF type | −0.444 | 0.287 | 2.392 | 1 | 0.122 | 0.641 | 0.365 | 1.126 |
DAT_2y | −0.681 | 0.315 | 4.677 | 1 | 0.031 | 0.506 | 0.273 | 0.936 |
Obstructive sleep apnea | −0.645 | 0.280 | 5.287 | 1 | 0.021 | 0.525 | 0.303 | 0.909 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nastasă, A.; Sahloul, M.H.; Iorgulescu, C.; Bogdan, Ș.; Scărlătescu, A.; Paja, S.; Pupaza, A.; Mitran, R.; Gondos, V.; Vătășescu, R.G. The Association between Diagnosis-to-Ablation Time and the Recurrence of Atrial Fibrillation: A Retrospective Cohort Study. Diseases 2024, 12, 38. https://doi.org/10.3390/diseases12020038
Nastasă A, Sahloul MH, Iorgulescu C, Bogdan Ș, Scărlătescu A, Paja S, Pupaza A, Mitran R, Gondos V, Vătășescu RG. The Association between Diagnosis-to-Ablation Time and the Recurrence of Atrial Fibrillation: A Retrospective Cohort Study. Diseases. 2024; 12(2):38. https://doi.org/10.3390/diseases12020038
Chicago/Turabian StyleNastasă, Alexandrina, Mohamad Hussam Sahloul, Corneliu Iorgulescu, Ștefan Bogdan, Alina Scărlătescu, Steliana Paja, Adelina Pupaza, Raluca Mitran, Viviana Gondos, and Radu Gabriel Vătășescu. 2024. "The Association between Diagnosis-to-Ablation Time and the Recurrence of Atrial Fibrillation: A Retrospective Cohort Study" Diseases 12, no. 2: 38. https://doi.org/10.3390/diseases12020038
APA StyleNastasă, A., Sahloul, M. H., Iorgulescu, C., Bogdan, Ș., Scărlătescu, A., Paja, S., Pupaza, A., Mitran, R., Gondos, V., & Vătășescu, R. G. (2024). The Association between Diagnosis-to-Ablation Time and the Recurrence of Atrial Fibrillation: A Retrospective Cohort Study. Diseases, 12(2), 38. https://doi.org/10.3390/diseases12020038