Analysis of HLA-G 14 bp Insertion/Deletion Polymorphism and HLA-G, ILT2 and ILT4 Expression in Head and Neck Squamous Cell Carcinoma Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. PCR Analysis of HLA-G 14 bp ins/del Polymorphism
2.3. Real-Time RT-PCR Analysis of HLA-G, ILT2 and ILT4 Expression
2.4. RT-PCR of HLA-G Isoforms
2.5. Statistical Analysis
3. Results
3.1. Characteristics of the Study Groups
3.2. Analysis of HLA-G 14 bp ins/del Polymorphism and HLA-G mRNA Expression in HNSCC Patients and Control Group
3.3. Association of HLA-G Isoforms with HLA-G mRNA Expression in HNSCC Patients
3.4. Association of HLA-G, ILT2 and ILT4 mRNA Expression with Clinical Variables in HNSCC Patients
3.5. Association of HLA-G with ILT2 and ILT4 mRNA Expression in HNSCC Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barsouk, A.; Aluru, J.S.; Rawla, P.; Saginala, K.; Barsouk, A. Epidemiology, Risk Factors, and Prevention of Head and Neck Squamous Cell Carcinoma. Med. Sci. 2023, 11, 42. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.E.; Burtness, B.; Leemans, C.R.; Lui, V.W.Y.; Bauman, J.E.; Grandis, J.R. Head and neck squamous cell carcinoma. Nat. Rev. Dis. Primers 2020, 6, 92. [Google Scholar] [CrossRef] [PubMed]
- Kovats, S.; Main, E.K.; Librach, C.; Stubblebine, M.; Fisher, S.J.; DeMars, R. A class I antigen, HLA-G, expressed in human trophoblasts. Science 1990, 248, 220–223. [Google Scholar] [CrossRef]
- Morandi, F.; Rizzo, R.; Fainardi, E.; Rouas-Freiss, N.; Pistoia, V. Recent Advances in Our Understanding of HLA-G Biology: Lessons from a Wide Spectrum of Human Diseases. J. Immunol. Res. 2016, 2016, 4326495. [Google Scholar] [CrossRef] [PubMed]
- Martín-Villa, J.M.; Vaquero-Yuste, C.; Molina-Alejandre, M.; Juarez, I.; Suárez-Trujillo, F.; López-Nares, A.; Palacio-Gruber, J.; Barrera-Gutiérrez, L.; Fernández-Cruz, E.; Rodríguez-Sainz, C.; et al. HLA-G: Too Much or Too Little? Role in Cancer and Autoimmune Disease. Front. Immunol. 2022, 13, 796054. [Google Scholar] [CrossRef]
- Bartolome, J.; Molto, C.; Benitez-Fuentes, J.D.; Fernandez-Hinojal, G.; Manzano, A.; Perez-Segura, P.; Mittal, A.; Tamimi, F.; Amir, E.; Ocana, A. Prognostic value of human leukocyte antigen G expression in solid tumors: A systematic review and meta-analysis. Front. Immunol. 2023, 14, 1165813. [Google Scholar] [CrossRef]
- Geraghty, D.E.; Koller, B.H.; Orr, H.T. A human major histocompatibility complex class I gene that encodes a protein with a shortened cytoplasmic segment. Proc. Natl. Acad. Sci. USA 1987, 84, 9145–9149. [Google Scholar] [CrossRef]
- González, A.; Rebmann, V.; LeMaoult, J.; Horn, P.A.; Carosella, E.D.; Alegre, E. The immunosuppressive molecule HLA-G and its clinical implications. Crit. Rev. Clin. Lab. Sci. 2012, 49, 63–84. [Google Scholar] [CrossRef]
- Lin, A.; Yan, W.H. Intercellular transfer of HLA-G: Its potential in cancer immunology. Clin. Transl. Immunol. 2019, 8, e1077. [Google Scholar] [CrossRef]
- Puppo, F.; Contini, P.; Ghio, M.; Indiveri, F. Soluble HLA class I molecules/CD8 ligation trigger apoptosis of CD8+ cells by Fas/Fas-ligand interaction. Sci. World J. 2002, 2, 421–423. [Google Scholar] [CrossRef]
- Kang, X.; Kim, J.; Deng, M.; John, S.; Chen, H.; Wu, G.; Phan, H.; Zhang, C.C. Inhibitory leukocyte immunoglobulin-like receptors: Immune checkpoint proteins and tumor sustaining factors. Cell Cycle 2016, 15, 25–40. [Google Scholar] [CrossRef] [PubMed]
- Shiroishi, M.; Kuroki, K.; Ose, T.; Rasubala, L.; Shiratori, I.; Arase, H.; Tsumoto, K.; Kumagai, I.; Kohda, D.; Maenaka, K. Efficient leukocyte Ig-like receptor signaling and crystal structure of disulfide-linked HLA-G dimer. J. Biol. Chem. 2006, 281, 10439–10447. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, S.; Antoine, M.; Uzan, S.; McMaster, M.; Dausset, J.; Carosella, E.D.; Paul, P. Specific activation of the non-classical class I histocompatibility HLA-G antigen and expression of the ILT2 inhibitory receptor in human breast cancer. J. Pathol. 2002, 196, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Urosevic, M.; Kamarashev, J.; Burg, G.; Dummer, R. Primary cutaneous CD8+ and CD56+ T-cell lymphomas express HLA-G and killer-cell inhibitory ligand, ILT2. Blood 2004, 103, 1796–1798. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liu, J.; Gao, P.; Wang, Y.; Liu, C. Expression of Ig-like transcript 4 inhibitory receptor in human non-small cell lung cancer. Chest 2008, 134, 783–788. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, L.; Gao, W.; Li, L.; Cui, X.; Yang, H.; Lin, W.; Dang, Q.; Zhang, N.; Sun, Y. Inhibitory receptor immunoglobulin-like transcript 4 was highly expressed in primary ductal and lobular breast cancer and significantly correlated with IL-10. Diagn. Pathol. 2014, 9, 85. [Google Scholar] [CrossRef] [PubMed]
- Villa-Álvarez, M.; Lorenzo-Herrero, S.; Gonzalez-Rodriguez, A.P.; López-Soto, A.; Payer, A.R.; Gonzalez-Garcia, E.; Huergo-Zapico, L.; Gonzalez, S. Ig-like transcript 2 (ILT2) suppresses T cell function in chronic lymphocytic leukemia. Oncoimmunology 2017, 6, e1353856. [Google Scholar] [CrossRef]
- Cai, Z.; Wang, L.; Han, Y.; Gao, W.; Wei, X.; Gong, R.; Zhu, M.; Sun, Y.; Yu, S. Immunoglobulin-like transcript 4 and human leukocyte antigen-G interaction promotes the progression of human colorectal cancer. Int. J. Oncol. 2019, 54, 1943–1954. [Google Scholar] [CrossRef]
- Chen, Q.Y.; Chen, Y.X.; Han, Q.Y.; Zhang, J.G.; Zhou, W.J.; Zhang, X.; Ye, Y.H.; Yan, W.H.; Lin, A. Prognostic Significance of Immune Checkpoints HLA-G/ILT-2/4 and PD-L1 in Colorectal Cancer. Front. Immunol. 2021, 12, 679090. [Google Scholar] [CrossRef]
- Zhang, P.; Guo, X.; Li, J.; Yu, S.; Wang, L.; Jiang, G.; Yang, D.; Wei, Z.; Zhang, N.; Liu, J.; et al. Immunoglobulin-like transcript 4 promotes tumor progression and metastasis and up-regulates VEGF-C expression via ERK signaling pathway in non-small cell lung cancer. Oncotarget 2015, 6, 13550–13563. [Google Scholar] [CrossRef]
- Wang, L.; Fan, J.; Ye, W.; Han, J.; Zhang, Y.; Zhao, L.; Duan, J.; Yin, D.; Yi, Y. The Expression of ILT4 in Myeloid Dendritic Cells in Patients with Hepatocellular Carcinoma. Immunol. Investig. 2019, 48, 704–718. [Google Scholar] [CrossRef]
- Li, Q.; Li, J.; Wang, S.; Wang, J.; Chen, X.; Zhou, D.; Fang, Y.; Gao, A.; Sun, Y. Overexpressed immunoglobulin-like transcript (ILT) 4 in lung adenocarcinoma is correlated with immunosuppressive T cell subset infiltration and poor patient outcomes. Biomark. Res. 2020, 8, 11. [Google Scholar] [CrossRef]
- Yang, Z.; Gao, A.; Shi, W.; Wang, J.; Zhang, X.; Xu, Z.; Xu, T.; Zheng, Y.; Sun, Y.; Yang, F. ILT4 in Colorectal Cancer Cells Induces Suppressive T Cell Contexture and Disease Progression. Onco Targets Ther. 2021, 14, 4239–4254. [Google Scholar] [CrossRef]
- Chen, Q.Y.; Zhou, W.J.; Zhang, J.G.; Zhang, X.; Han, Q.Y.; Lin, A.; Yan, W.H. Prognostic significance of the immune checkpoint HLA-G/ILT-4 in the survival of patients with gastric cancer. Int. Immunopharmacol. 2022, 109, 108798. [Google Scholar] [CrossRef] [PubMed]
- Hviid, T.V.; Hylenius, S.; Rorbye, C.; Nielsen, L.G. HLA-G allelic variants are associated with differences in the HLA-G mRNA isoform profile and HLA-G mRNA levels. Immunogenetics 2003, 55, 63–79. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, B.S.; Muniz, Y.C.N.; Prompt, A.H.; Castelli, E.C.; Mendes-Junior, C.T.; Donadi, E.A. Genetic association between HLA-G 14-bp polymorphism and diseases: A systematic review and meta-analysis. Hum. Immunol. 2018, 79, 724–735. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Lu, J.; Wu, Y.E.; Zhao, X.; Li, L. Genetic variation in the HLA-G 3′UTR 14-bp insertion/deletion and the associated cancer risk: Evidence from 25 case-control studies. Biosci. Rep. 2019, 39, BSR20181991. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Wang, P.; Dai, P.; Jin, B.; Tong, Y.; Lin, H.; Shi, G. Correlation between human leukocyte antigen-G expression and clinical parameters in oral squamous cell carcinoma. Indian. J. Cancer 2018, 55, 340–343. [Google Scholar] [PubMed]
- Silva, T.G.; Crispim, J.C.; Miranda, F.A.; Hassumi, M.K.; de Mello, J.M.; Simões, R.T.; Souto, F.; Soares, E.G.; Donadi, E.A.; Soares, C.P. Expression of the nonclassical HLA-G and HLA-E molecules in laryngeal lesions as biomarkers of tumor invasiveness. Histol. Histopathol. 2011, 26, 1487–1497. [Google Scholar] [PubMed]
- Gonçalves, A.S.; Wastowski, I.J.; Capeletti, L.R.; Sacono, N.T.; Cortez, A.P.; Valadares, M.C.; Silva, T.A.; Batista, A.C. The clinicopathologic significance of the expression of HLA-G in oral squamous cell carcinoma. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2014, 117, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.S.; Arantes, D.A.; Bernardes, V.F.; Jaeger, F.; Silva, J.M.; Silva, T.A.; Aguiar, M.C.; Batista, A.C. Immunosuppressive mediators of oral squamous cell carcinoma in tumour samples and saliva. Hum. Immunol. 2015, 76, 52–58. [Google Scholar] [CrossRef]
- Gonçalves, A.S.; Mosconi, C.; Jaeger, F.; Wastowski, I.J.; Aguiar, M.C.F.; Silva, T.A.; Ribeiro-Rotta, R.F.; Costa, N.L.; Batista, A.C. Overexpression of immunomodulatory mediators in oral precancerous lesions. Hum. Immunol. 2017, 78, 752–757. [Google Scholar] [CrossRef] [PubMed]
- Imani, R.; Seyedmajidi, M.; Ghasemi, N.; Moslemi, D.; Shafaee, S.; Bijani, A. HLA-G Expression is Associated with an Unfavorable Prognosis of Oral Squamous Cell Carcinoma. Asian Pac. J. Cancer Prev. 2018, 19, 2527–2533. [Google Scholar] [PubMed]
- Russell, S.; Angell, T.; Lechner, M.; Liebertz, D.; Correa, A.; Sinha, U.; Kokot, N.; Epstein, A. Immune cell infiltration patterns and survival in head and neck squamous cell carcinoma. Head Neck Oncol. 2013, 5, 24. [Google Scholar] [PubMed]
- Sarmah, N.; Baruah, M.N.; Baruah, S. Immune Modulation in HLA-G Expressing Head and Neck Squamous Cell Carcinoma in Relation to Human Papilloma Virus Positivity: A Study From Northeast India. Front. Oncol. 2019, 9, 58. [Google Scholar] [CrossRef] [PubMed]
- Oren, N.; Vaysberg, A.; Ginat, D.T. Updated WHO nomenclature of head and neck lesions and associated imaging findings. Insights Imaging 2019, 10, 72. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.A.; Dykes, D.D.; Polesky, H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988, 16, 1215. [Google Scholar] [CrossRef] [PubMed]
- Hviid, T.V.; Hylenius, S.; Hoegh, A.M.; Kruse, C.; Christiansen, O.B. HLA-G polymorphisms in couples with recurrent spontaneous abortions. Tissue Antigens 2002, 60, 122–132. [Google Scholar] [CrossRef]
- Moreau, P.; Mouillot, G.; Rousseau, P.; Marcou, C.; Dausset, J.; Carosella, E.D. HLA-G gene repression is reversed by demethylation. Proc. Natl. Acad. Sci. USA 2003, 100, 1191–1196. [Google Scholar] [CrossRef]
- Yao, Y.Q.; Barlow, D.H.; Sargent, I.L. Differential expression of alternatively spliced transcripts of HLA-G in human preimplantation embryos and inner cell masses. J. Immunol. 2005, 175, 8379–8385. [Google Scholar] [CrossRef]
- Zaborek-Łyczba, M.; Łyczba, J.; Mertowska, P.; Mertowski, S.; Hymos, A.; Podgajna, M.; Niedźwiedzka-Rystwej, P.; Grywalska, E. The HLA-G Immune Checkpoint Plays a Pivotal Role in the Regulation of Immune Response in Autoimmune Diseases. Int. J. Mol. Sci. 2021, 22, 13348. [Google Scholar] [CrossRef]
- Paul, P.; Rouas-Freiss, N.; Khalil-Daher, I.; Moreau, P.; Riteau, B.; Le Gal, F.A.; Avril, M.F.; Dausset, J.; Guillet, J.G.; Carosella, E.D. HLA-G expression in melanoma: A way for tumor cells to escape from immunosurveillance. Proc. Natl. Acad. Sci. USA 1998, 95, 4510–4515. [Google Scholar] [CrossRef]
- Krijgsman, D.; Roelands, J.; Hendrickx, W.; Bedognetti, D.; Kuppen, P.J.K. HLA-G: A New Immune Checkpoint in Cancer? Int. J. Mol. Sci. 2020, 21, 4528. [Google Scholar] [CrossRef]
- Agnihotri, V.; Gupta, A.; Kumar, L.; Dey, S. Serum sHLA-G: Significant diagnostic biomarker with respect to therapy and immunosuppressive mediators in Head and Neck Squamous Cell Carcinoma. Sci. Rep. 2020, 10, 3806. [Google Scholar] [CrossRef]
- Fregonezi, P.A.; Silva, T.G.; Simões, R.T.; Moreau, P.; Carosella, E.D.; Kläy, C.P.; Gonçalves, M.A.; Soares, E.G.; Souto, F.; Donadi, E.A.; et al. Expression of nonclassical molecule human leukocyte antigen-G in oral lesions. Am. J. Otolaryngol. 2012, 33, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.S.; Oliveira, J.P.; Oliveira, C.F.; Silva, T.A.; Mendonça, E.F.; Wastowski, I.J.; Batista, A.C. Relevance of HLA-G, HLA-E and IL-10 expression in lip carcinogenesis. Hum. Immunol. 2016, 77, 785–790. [Google Scholar] [CrossRef]
- Mosconi, C.; Arantes, D.A.C.; Gonçalves, A.S.; Alencar, R.C.G.; Oliveira, J.C.; Silva, T.A.; Mendonça, E.F.; Batista, A.C. Immunohistochemical investigations on the expression of programmed cell death ligand 1, human leukocyte antigens G and E, and granzyme B in intraoral mucoepidermoid carcinoma. Arch. Oral. Biol. 2017, 83, 55–62. [Google Scholar] [CrossRef]
- Amodio, G.; Gregori, S. HLA-G Genotype/Expression/Disease Association Studies: Success, Hurdles, and Perspectives. Front. Immunol. 2020, 11, 1178. [Google Scholar] [CrossRef]
- Agnihotri, V.; Gupta, A.; Kumar, R.; Upadhyay, A.D.; Dwivedi, S.; Kumar, L.; Dey, S. Promising link of HLA-G polymorphism, tobacco consumption and risk of Head and Neck Squamous Cell Carcinoma (HNSCC) in North Indian population. Hum. Immunol. 2017, 78, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhao, L.; Liu, L.; Liu, X. Human leucocyte antigen-G 14-bp InDel polymorphism and oral squamous cell carcinoma risk in Chinese Han population: A case-control study. Int. J. Immunogenet. 2018, 45, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Xu, C.; Chu, D.; Zhang, X.; Li, J.; Ji, G.; Hong, L.; Feng, Q.; Li, X.; Wu, G.; et al. Human leukocyte antigen G is associated with esophageal squamous cell carcinoma progression and poor prognosis. Immunol. Lett. 2014, 161, 13–19. [Google Scholar] [CrossRef]
- Gallegos, C.E.; Michelin, S.; Dubner, D.; Carosella, E.D. Immunomodulation of classical and non-classical HLA molecules by ionizing radiation. Cell Immunol. 2016, 303, 16–23. [Google Scholar] [CrossRef]
- Scarabel, L.; Polesel, J.; De Mattia, E.; Buonadonna, A.; D’Andrea, M.R.; Cecchin, E.; Toffoli, G. Association of HLA-G 3′UTR Polymorphisms with Response to First-Line FOLFIRI Treatment in Metastatic Colorectal Cancer. Pharmaceutics 2022, 14, 2737. [Google Scholar] [CrossRef] [PubMed]
- Gonzaga, A.K.G.; Santos, H.B.P.; Crispim, J.C.O.; Souza, L.B.; Palomino, G.M. Immunohistochemical evaluation of HLA-G and FoxP3+ T regulatory cells in oral cavity and lower lip squamous cell carcinomas. Braz. Oral. Res. 2019, 33, e020. [Google Scholar] [CrossRef] [PubMed]
- Kulski, J.K.; Pfaff, A.L.; Marney, L.D.; Fröhlich, A.; Bubb, V.J.; Quinn, J.P.; Koks, S. Regulation of expression quantitative trait loci by SVA retrotransposons within the major histocompatibility complex. Exp. Biol. Med. 2023, 248, 2304–2318. [Google Scholar] [CrossRef]
- LeMaoult, J.; Zafaranloo, K.; Le Danff, C.; Carosella, E.D. HLA-G up-regulates ILT2, ILT3, ILT4, and KIR2DL4 in antigen presenting cells, NK cells, and T cells. FASEB J. 2005, 19, 662–664. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lu, N.; Xue, Y.; Zhang, M.; Li, Y.; Si, Y.; Bian, X.; Jia, Y.; Wang, Y. Expression of immunoglobulin-like transcript (ILT)2 and ILT3 in human gastric cancer and its clinical significance. Mol. Med. Rep. 2012, 5, 910–916. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lin, A.; Han, Q.Y.; Zhang, J.G.; Chen, Q.Y.; Ye, Y.H.; Zhou, W.J.; Xu, H.H.; Gan, J.; Yan, W.H. Intratumor Heterogeneity of HLA-G Expression in Cancer Lesions. Front. Immunol. 2020, 11, 565759. [Google Scholar] [CrossRef]
- Saltz, J.; Gupta, R.; Hou, L.; Kurc, T.; Singh, P.; Nguyen, V.; Samaras, D.; Shroyer, K.R.; Zhao, T.; Batiste, R.; et al. Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images. Cell Rep. 2018, 23, 181–193.e187. [Google Scholar] [CrossRef]
- Rouas-Freiss, N.; LeMaoult, J.; Verine, J.; Tronik-Le Roux, D.; Culine, S.; Hennequin, C.; Desgrandchamps, F.; Carosella, E.D. Intratumor heterogeneity of immune checkpoints in primary renal cell cancer: Focus on HLA-G/ILT2/ILT4. Oncoimmunology 2017, 6, e1342023. [Google Scholar] [CrossRef]
- Warnecke-Eberz, U.; Metzger, R.; Hölscher, A.H.; Drebber, U.; Bollschweiler, E. Diagnostic marker signature for esophageal cancer from transcriptome analysis. Tumour Biol. 2016, 37, 6349–6358. [Google Scholar] [CrossRef] [PubMed]
- Gao, A.; Sun, Y.; Peng, G. ILT4 functions as a potential checkpoint molecule for tumor immunotherapy. Biochim. Biophys. Acta Rev. Cancer 2018, 1869, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Morandi, F.; Airoldi, I. HLA-G and Other Immune Checkpoint Molecules as Targets for Novel Combined Immunotherapies. Int. J. Mol. Sci. 2022, 23, 2925. [Google Scholar] [CrossRef] [PubMed]
- Dumont, C.; Jacquier, A.; Verine, J.; Noel, F.; Goujon, A.; Wu, C.L.; Hung, T.M.; Desgrandchamps, F.; Culine, S.; Carosella, E.D.; et al. CD8+PD-1−ILT2+ T Cells Are an Intratumoral Cytotoxic Population Selectively Inhibited by the Immune-Checkpoint HLA-G. Cancer Immunol. Res. 2019, 7, 1619–1632. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Mao, J.; Wang, C. The microRNA-152/human leukocyte antigen-G axis affects proliferation and immune escape of non-small cell lung cancer cells. J. Int. Med. Res. 2020, 48, 0300060520970758. [Google Scholar] [CrossRef]
- Attia, J.V.D.; Dessens, C.E.; van de Water, R.; Houvast, R.D.; Kuppen, P.J.K.; Krijgsman, D. The Molecular and Functional Characteristics of HLA-G and the Interaction with Its Receptors: Where to Intervene for Cancer Immunotherapy? Int. J. Mol. Sci. 2020, 21, 8678. [Google Scholar] [CrossRef]
- Gan, J.; Di, X.H.; Yan, Z.Y.; Gao, Y.F.; Xu, H.H. HLA-G 3′UTR polymorphism diplotypes and soluble HLA-G plasma levels impact cervical cancer susceptibility and prognosis. Front. Immunol. 2022, 13, 1076040. [Google Scholar] [CrossRef]
- Rebmann, V.; Schwich, E.; Michita, R.T.; Grüntkemeier, L.; Bittner, A.K.; Rohn, H.; Horn, P.A.; Hoffmann, O.; Kimmig, R.; Kasimir-Bauer, S. Systematic Evaluation of HLA-G 3′Untranslated Region Variants in Locally Advanced, Non-Metastatic Breast Cancer Patients: UTR-1, 2 or UTR-4 are Predictors for Therapy and Disease Outcome. Front. Immunol. 2021, 12, 817132. [Google Scholar] [CrossRef]
Parameter | HNSCC Patients (n = 34) | Controls (n = 98) | p-Value |
---|---|---|---|
Males/Females | 33/1 | 92/6 | 0.79 |
Age at examination (mean ± SD, years) | 62.32 ± 6.63 | 63.10 ± 7.41 | 0.57 |
Age at onset (mean ± SD, years) | 61.65 ± 6.18 | - | - |
Primary diagnosis | 31 | - | - |
Relapse | 3 | - | - |
Tobacco consumption (yes/no) | 30/4 | - | - |
Tumor staging | |||
T1 | 1 | - | - |
T2 | 6 | - | - |
T3 | 6 | - | - |
T4 | 16 | - | - |
Not available | 5 | ||
Lymph nodes | |||
N0 | 13 | - | - |
N1 | 6 | - | - |
N2 | 10 | - | - |
N3 | 5 | - | - |
Metastasis | - | ||
M0 | 28 | - | - |
M1 | 6 | - | - |
p16 positivity | |||
yes | 6 | - | - |
no | 13 | - | - |
Not available | 15 | - | - |
SNP/ Model | Allele/ Genotype | HNSCC Patients (n = 34) | Controls | Logistic Regression Analysis | |
---|---|---|---|---|---|
(n = 98) | p-Value | OR (95% CI) | |||
14 bp ins/del | 14 bp del | 36 (52.94%) | 112 (57.14%) | ||
14 bp ins | 32 (47.06%) | 84 (42.86%) | 0.65 | 1.19 (0.68–2.06) | |
14 bp del/del | 7 (20.59%) | 31 (31.63%) | 1.00 | ||
Codominant | 14 bp ins/del | 22 (64.70%) | 50 (51.02%) | 0.38 | 1.87 (0.71–4.94) |
14 bp ins/ins | 5 (14.71%) | 17 (17.35%) | 1.19 (0.32–4.39) | ||
14 bp del/del | 7 (20.59%) | 31 (31.63%) | 1.00 | ||
Dominant | 14 bp ins/del + 14 bp ins/ins | 27 (79.41%) | 67 (68.37%) | 0.26 | 1.70 (0.66–4.37) |
14 bp del/del + 14 bp ins/del | 29 (85.29%) | 81 (82.65%) | 1.00 | ||
Recessive | 14 bp ins/ins | 5 (14.71%) | 17 (17.35%) | 0.62 | 0.76 (0.25–2.27) |
HLA-G Genotype | Relative HLA-G Expression (Mean ± SD) | p-Value |
---|---|---|
14 bp del/del (n = 7) | 1.483 ± 1.931 | 0.4794 (del vs. H) |
14 bp ins/del (n = 22) | 0.9012 ± 1.271 | 0.0641 (H vs. ins) |
14 bp ins/ins (n = 5) | 0.3408 ± 0.2228 | 0.1721 (del vs. ins) |
Clinical Variables | Relative HLA-G Expression (Mean ± SD) | p-Value |
---|---|---|
Age at onset | ||
I: 49 to 60 (n = 13) | 0.8367 ± 1.591 | 0.5901 (I vs. II) |
II: 61 to 66 (n = 16) | 1.139 ± 1.338 | 0.2129 (II vs. III) |
III: 67 to 81 (n = 5) | 0.5612 ± 0.6491 | 0.6096 (I vs. III) |
Tumor staging | ||
I. T1 + T2 (n = 7) | 0.6519 ± 1.055 | 0.8163 (I vs. II) |
II. T3 (n = 6) | 0.5507 ± 0.3180 | 0.0601 (II vs. III) |
III. T4 (n = 16) | 1.454 ± 1.717 | 0.1878 (I vs. III) |
Lymph nodes | ||
I. N0 (n = 13) | 1.044 ± 1.204 | 0.0754 (I vs. II) |
II. N1 (n = 6) | 0.3655 ± 0.2839 | 0.1373 (II vs. III) |
III. N2 + N3 (n = 15) | 1.076 ± 1.695 | 0.9547 (I vs. III) |
Metastasis | ||
M0 (n = 28) | 0.9180 ± 1.393 | |
M1 (n = 6) | 1.035 ± 1.261 | 0.8460 |
p16 positivity | ||
Yes (n = 6) | 0.3532 ± 0.2838 | |
No (n = 13) | 1.009 ± 1.442 | 0.1392 |
Clinical Variables | Relative HLA-G Expression (Mean ± SD) | p-Value |
---|---|---|
Age at onset | ||
I: 49 to 60 (n = 11) | 0.7775 ± 1.663 | 0.4538 (I vs. II) |
II: 61 to 66 (n = 14) | 1.255 ± 1.392 | 0.2598 (II vs. III) |
III: 67 to 81 (n = 4) | 0.6343 ± 0.7254 | 0.8209 (I vs. III) |
Tumor staging | ||
I. T1 + T2 (n = 6) | 0.2680 ± 0.3137 | 0.2192 (I vs. II) |
II. T3 (n = 5) | 0.5396 ± 0.3542 | 0.0832 (II vs. III) |
III. T4 (n = 14) | 1.480 ± 1.801 | 0.0289 (I vs. III) |
Lymph nodes | ||
I. N0 (n = 11) | 0.9721 ± 1.250 | 0.1522 (I vs. II) |
II. N1 (n = 6) | 0.3655 ± 0.2839 | 0.1884 (II vs. III) |
III. N2 + N3 (n = 11) | 1.165 ± 1.839 | 0.7768 (I vs. III) |
p16 positivity | ||
Yes (n = 5) | 0.4134 ± 0.2710 | |
No (n = 11) | 0.9813 ± 1.497 | 0.2498 |
Clinical Variables | Relative ILT2 Expression (Mean ± SD) | p-Value | Relative ILT4 Expression (Mean ± SD) | p-Value |
---|---|---|---|---|
Age at onset | ||||
I: 49 to 60 (n = 13) | 0.2474 ± 0.4098 | 0.2507 (I vs. II) | 0.1152 ± 0.1267 | 0.7403 (I vs. II) |
II: 61 to 66 (n = 16) | 0.1076 ± 0.0987 | 0.3834 (II vs. III) | 0.1006 ± 0.1027 | 0.8031 (II vs. III) |
III: 67 to 81 (n = 5) | 0.2590 ± 0.3418 | 0.9529 (I vs. III) | 0.1156 ± 0.1149 | 0.9954 (I vs. III) |
Tumor staging | ||||
I. T1 + T2 (n = 7) | 0.2573 ± 0.3015 | 0.3516 (I vs. II) | 0.1880 ± 0.1259 | 0.0495 (I vs. II) |
II. T3 (n = 6) | 0.1320 ± 0.1356 | 0.7021 (II vs. III) | 0.0693 ± 0.0379 | 0.6005 (II vs. III) |
III. T4 (n = 16) | 0.1734 ± 0.3641 | 0.5749 (I vs. III) | 0.0868 ± 0.1152 | 0.0987 (I vs. III) |
Lymph nodes | ||||
I. N0 (n = 13) | 0.1122 ± 0.1306 | 0.3901 (I vs. II) | 0.06531 ± 0.04475 | 0.1859 (I vs. II) |
II. N1 (n = 6) | 0.2370 ± 0.3126 | 0.9341 (II vs. III) | 0.1487 ± 0.1297 | 0.7714 (II vs. III) |
III.N2 + N3 (n = 15) | 0.2234 ± 0.3781 | 0.3007 (I vs. III) | 0.1297 ± 0.1354 | 0.1008 (I vs. III) |
Metastasis | ||||
M0 (n = 28) | 0.2107 ± 0.3135 | 0.1096 ± 0.1079 | ||
M1 (n = 6) | 0.05533 ± 0.07611 | 0.0269 | 0.1028 ± 0.1346 | 0.9118 |
p16 positivity | ||||
Yes (n = 6) | 0.2705 ± 0.1854 | 0.1227 ± 0.09438 | ||
No (n = 13) | 0.1250 ± 0.2257 | 0.1666 | 0.09562 ± 0.08947 | 0.5695 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durmanova, V.; Tedla, M.; Rada, D.; Bandzuchova, H.; Kuba, D.; Suchankova, M.; Ocenasova, A.; Bucova, M. Analysis of HLA-G 14 bp Insertion/Deletion Polymorphism and HLA-G, ILT2 and ILT4 Expression in Head and Neck Squamous Cell Carcinoma Patients. Diseases 2024, 12, 34. https://doi.org/10.3390/diseases12020034
Durmanova V, Tedla M, Rada D, Bandzuchova H, Kuba D, Suchankova M, Ocenasova A, Bucova M. Analysis of HLA-G 14 bp Insertion/Deletion Polymorphism and HLA-G, ILT2 and ILT4 Expression in Head and Neck Squamous Cell Carcinoma Patients. Diseases. 2024; 12(2):34. https://doi.org/10.3390/diseases12020034
Chicago/Turabian StyleDurmanova, Vladimira, Miroslav Tedla, Dusan Rada, Helena Bandzuchova, Daniel Kuba, Magda Suchankova, Agata Ocenasova, and Maria Bucova. 2024. "Analysis of HLA-G 14 bp Insertion/Deletion Polymorphism and HLA-G, ILT2 and ILT4 Expression in Head and Neck Squamous Cell Carcinoma Patients" Diseases 12, no. 2: 34. https://doi.org/10.3390/diseases12020034
APA StyleDurmanova, V., Tedla, M., Rada, D., Bandzuchova, H., Kuba, D., Suchankova, M., Ocenasova, A., & Bucova, M. (2024). Analysis of HLA-G 14 bp Insertion/Deletion Polymorphism and HLA-G, ILT2 and ILT4 Expression in Head and Neck Squamous Cell Carcinoma Patients. Diseases, 12(2), 34. https://doi.org/10.3390/diseases12020034