Cyclosporine A Causes Gingival Overgrowth by Promoting Entry into the S Phase at the G1/S Cell Cycle Checkpoint in Gingival Fibroblasts Exposed to Lipopolysaccharide
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Line and Culture
2.2. Evaluation of Cell Proliferation
2.3. Analysis of Cell Cycle Phase Distribution
2.4. Analysis of mRNA Expression
2.5. Analysis of Protein Expression
2.6. Statistical Analysis
3. Results
3.1. The Proliferation of Gingival Fibroblasts in the Presence of LPS and Cyclosporine A
3.2. Effect of Cyclosporine A on Cell Cycle Distribution in Gingival Fibroblasts Exposed to LPS
3.3. Effect of Cyclosporine A on mRNA Expression in Gingival Fibroblasts Exposed to LPS
3.4. Effect of Cyclosporine A on Protein Expression in Gingival Fibroblasts Exposed to LPS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tungare, S.; Paranjpe, A.G. Drug-induced gingival overgrowth. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024; Last Update: 19 September 2022. [Google Scholar]
- Droździk, A.; Droździk, M. Drug-induced gingival overgrowth-molecular aspects of drug actions. Int. J. Mol. Sci. 2023, 24, 5448. [Google Scholar] [CrossRef]
- International Report on Organ Donation and Transplantation Activities 2022, Version October 2023. WHO-ONT Global Observatory and Transplantation (GODT). Available online: https://www.transplant-observatory.org/wp-content/uploads/2023/11/2022-data-global-report_VF_2.pdf (accessed on 16 October 2024).
- Takeuchi, R. The effect of basic fibroblast growth factor on cell cycle in human gingival fibroblasts from nifedipine responder and non-responder. J. Oral Sci. 2004, 46, 37–44. [Google Scholar] [CrossRef]
- Takeuchi, R.; Matsumoto, H.; Okada, H.; Hori, M.; Gunji, A.; Hakozaki, K.; Akimoto, Y.; Fujii, A. Differences of cell growth and cell cycle regulators induced by basic fibroblast growth factor between nifedipine responders and non-responders. J. Pharmacol. Sci. 2007, 103, 168–174. [Google Scholar] [CrossRef]
- Takeuchi, R.; Matsumoto, H.; Arikawa, K.; Taguchi, C.; Nakayama, R.; Nasu, I.; Hiratsuka, K. Phenytoin-induced gingival overgrowth caused by death receptor pathway malfunction. Oral Dis. 2017, 23, 653–659. [Google Scholar] [CrossRef]
- Takeuchi, R.; Nomura, T.; Yaguchi, M.; Taguchi, C.; Suzuki, I.; Suzuki, H.; Matsumoto, H.; Okada, Y.; Arikawa, K.; Nomoto, T.; et al. 18-α-glycyrrhetinic acid induces apoptosis in gingival fibroblasts exposed to phenytoin. Exp. Ther. Med. 2024, 28, 1–9. [Google Scholar] [CrossRef]
- Hassell, T.M.; Hefti, A.F. Drug-induced gingival overgrowth: Old problem, new problem. Crit. Rev. Oral Biol. Med. 1991, 2, 103–137. [Google Scholar] [CrossRef]
- Kato, T.; Okahashi, N.; Ohno, T.; Inaba, H.; Kawai, S.; Amano, A. Effect of phenytoin on collagen accumulation by human gingival fibroblasts exposed to TNF-alpha in vitro. Oral Dis. 2006, 12, 156–162. [Google Scholar] [CrossRef]
- Bajkovec, L.; Mrzljak, A.; Likic, R.; Alajbeg, I. Drug-induced gingival overgrowth in cardiovascular patients. World J. Cardiol. 2021, 13, 68–75. [Google Scholar] [CrossRef]
- Huang, W.; Lu, W.; Li, Q.; Zhang, Y.; Xie, B.; Luo, S.; Wei, Y.; Ma, Y.; Huang, Y. Effects of cyclosporine A on proliferation, invasion and migration of HTR-8/SVneo human extravillous trophoblasts. Biochem. Biophys. Res. Commun. 2020, 533, 645–650. [Google Scholar] [CrossRef]
- Lin, T.; Yu, C.C.; Liao, Y.W.; Hsieh, P.L.; Chu, P.M.; Liu, C.M.; Yu, C.H.; Su, T.R. miR-200a inhibits proliferation rate in drug-induced gingival overgrowth through targeting ZEB2. J. Formos. Med. Assoc. 2020, 119, 1299–1305. [Google Scholar] [CrossRef]
- Alikhani, M.; Alikhani, Z.; Graves, D.T. Apoptotic effects of LPS on fibroblasts are indirectly mediated through TNFR1. J. Dent. Res. 2004, 83, 671–676. [Google Scholar] [CrossRef]
- Jung, J.Y.; Jeong, Y.J.; Jeong, T.S.; Chung, H.J.; Kim, W.J. Inhibition of apoptotic signals in overgrowth of human gingival fibroblasts by cyclosporin A treatment. Arch. Oral Biol. 2008, 53, 1042–1049. [Google Scholar] [CrossRef]
- Takeuchi, R.; Hiratsuka, K.; Arikawa, K.; Ono, M.; Komiya, M.; Akimoto, Y.; Fujii, A.; Matsumoto, H. Possible pharmacotherapy for nifedipine-induced gingival overgrowth: 18a-glycyrrhetinic acid inhibits human gingival fibroblast growth. Br. J. Pharmacol. 2016, 173, 913–924. [Google Scholar] [CrossRef]
- Barnum, K.J.; O’Connell, M.J. Cell cycle regulation by checkpoints. Methods Mol. Biol. 2014, 1170, 29–40. [Google Scholar] [CrossRef]
- Weitzman, M.D.; Wang, J.Y.J. Cell cycle: DNA damage checkpoints. In Encyclopedia of Biological Chemistry II, Reference Work, 2nd ed.; Lennarz, W.J., Lane, M.D., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Takeuchi, R.; Matsumoto, H.; Akimoto, Y.; Fujii, A. Reduction in lipopolysaccharide-induced apoptosis of fibroblasts obtained from a patient with gingival overgrowth during nifedipine-treatment. Arch. Oral Biol. 2011, 56, 1073–1080. [Google Scholar] [CrossRef]
- Yang, N.; Wang, H.; Zhang, R.; Niu, Z.; Zheng, S.; Zhang, Z. C/EBP β mediates the aberrant inflammatory response and cell cycle arrest in Lps-stimulated human renal tubular epithelial cells by regulating NF-κB pathway. Arch. Med. Res. 2021, 52, 603–610. [Google Scholar] [CrossRef]
- Fujimori, Y.; Maeda, S.; Saeki, M.; Morisaki, I.; Kamisaki, Y. Inhibition by nifedipine of adherence- and activated macrophage-induced death of human gingival fibroblasts. Eur. J. Pharmacol. 2001, 415, 95–103. [Google Scholar] [CrossRef]
- Takeuchi, R.; Matsumoto, H.; Akimoto, Y.; Fujii, A. Inhibition of G1 cell cycle arrest in human gingival fibroblasts exposed to phenytoin. Fundam. Clin. Pharmacol. 2014, 28, 114–119. [Google Scholar] [CrossRef]
- Sobral, L.M.; Aseredo, F.; Agostini, M.; Bufalino, A.; Pereira, M.C.; Graner, E.; Coletta, R.D. Molecular events associated with ciclosporin A-induced gingival overgrowth are attenuated by Smad7 overexpression in fibroblasts. J. Periodontal Res. 2012, 47, 149–158. [Google Scholar] [CrossRef]
- Gutiérrez-Venegas, G.; Kawasaki-Cárdenas, P.; Arroyo-Cruz, S.R.; Maldonado-Frías, S. Luteolin inhibits lipopolysaccharide actions on human gingival fibroblasts. Eur. J. Pharmacol. 2006, 541, 95–105. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−∆∆C(T)) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Mitic, K.; Popovska, M.; Pandilova, M.; Jovanovic, R.; Spasovski, G.; Nikolov, V. The role of inflammation and apoptosis in cyclosporine A-induced gingival overgrowth. Bosn. J. Basic Med. Sci. 2013, 13, 14–20. [Google Scholar] [CrossRef]
- Abo-El Fetoh, M.E.; Helal, G.K.; Saleh, I.G.; Ewees, M.; ElShafey, M.; Elnagar, M.R.; Akool, E.S. Cyclosporin A activates human hepatocellular carcinoma (HepG2 cells) proliferation: Implication of EGFR-mediated ERK1/2 signaling pathway. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2020, 393, 897–908. [Google Scholar] [CrossRef]
- Qin, X.; Chen, Z. Metabolic dependence of cyclosporine A on cell proliferation of human non-small cell lung cancer A549 cells and its implication in post-transplant malignancy. Oncol. Rep. 2019, 41, 2997–3004. [Google Scholar] [CrossRef]
- Woda, C.B.; Bruneau, S.; Mak, A.L.; Haskova, Z.; Liu, K.; Ghosh, C.C.; Briscoe, D.M. Calcineurin inhibitors augment endothelial-to-mesenchymal transition by enhancing proliferation in association with cytokine-mediated activation. Biochem. Biophys. Res. Commun. 2019, 519, 667–673. [Google Scholar] [CrossRef]
- Khamchun, S.; Thongboonkerd, V. Cell cycle shift from G0/G1 to S and G2/M phases is responsible for increased adhesion of calcium oxalate crystals on repairing renal tubular cells at injured site. Cell Death Discov. 2018, 4, 106. [Google Scholar] [CrossRef]
- Parkar, M.H.; Hussain, F.; Wickramaratna, A.; Olsen, I. The immunosuppressant and hyperplasia-inducing drug cyclosporin A regulates the cell cycle and cyclin B1 gene expression in gingival fibroblasts in vitro. Cell Tissue Res. 2004, 317, 221–225. [Google Scholar] [CrossRef]
- Andrés, D.; Díez-Fernández, C.; Zaragoza, A.; Alvarez, A.; Cascales, M. Induction of cell proliferation by cyclosporine A in primary cultures of rat hepatocytes. Biochem. Pharmacol. 2001, 61, 427–435. [Google Scholar] [CrossRef]
- Guo, M.; Liu, Z.; Si, J.; Zhang, J.; Zhao, J.; Guo, Z.; Xie, Y.; Zhang, H.; Gan, L. Cediranib induces apoptosis, G1 phase cell cycle arrest, and autophagy in non-small-cell lung cancer cell A549 in vitro. Biomed. Res. Int. 2021, 2021, 5582648. [Google Scholar] [CrossRef]
- Liu, L.; Michowski, W.; Kolodziejczyk, A.; Sicinski, P. The cell cycle in stem cell proliferation, pluripotency and4 differentiation. Nat. Cell Biol. 2019, 21, 1060–1067. [Google Scholar] [CrossRef]
- Malumbres, M.; Barbacid, M. To cycle or not to cycle: A critical decision in cancer. Nat. Rev. Cancer 2001, 1, 222–231. [Google Scholar] [CrossRef]
- Sherr, C.J.; Roberts, J.M. Living with or without cyclins and cyclin-dependent kinases. Genes Dev. 2004, 18, 2699–2711. [Google Scholar] [CrossRef]
- Morgan, D.O. The cell cycle: Principles of control. Yale J. Biol. Med. 2007, 80, 141–142. [Google Scholar]
- Satyanarayana, A.; Kaldis, P. Mammalian cell-cycle regulation: Several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene 2009, 28, 2925–2939. [Google Scholar] [CrossRef]
- Sherr, C.J. Growth factor-regulated G1 cyclins. Stem Cells 1994, 12 (Suppl. S1), 47–55, discussion 55–57. [Google Scholar]
- Goel, S.; Bergholz, J.S.; Zhao, J.J. Targeting CDK4 and CDK6 in cancer. Nat. Rev. Cancer 2022, 22, 356–372. [Google Scholar] [CrossRef]
- Harbour, J.W.; Luo, R.X.; Dei Santi, A.; Postigo, A.A.; Dean, D.C. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell 1999, 98, 859–869. [Google Scholar] [CrossRef]
- Goodrich, D.W.; Wang, N.P.; Qian, Y.W.; Lee, E.Y.; Lee, W.H. The retinoblastoma gene product regulates progression through the G1 phase of the cell cycle. Cell 1991, 67, 293–302. [Google Scholar] [CrossRef]
- Sur, S.; Agrawal, D.K. Phosphatases and kinases regulating CDC25 activity in the cell cycle: Clinical implications of CDC25 overexpression and potential treatment strategies. Mol. Cell. Biochem. 2016, 416, 33–46. [Google Scholar] [CrossRef]
- Bretones, G.; Delgado, M.D.; León, J. Myc and cell cycle control. Biochim. Biophys. Acta 2015, 1849, 506–516. [Google Scholar] [CrossRef]
- Cánepa, E.T.; Scassa, M.E.; Ceruti, J.M.; Marazita, M.C.; Carcagno, A.L.; Sirkin, P.F.; Ogara, M.F. INK4 proteins, a family of mammalian CDK inhibitors with novel biological functions. IUBMB Life 2007, 59, 419–426. [Google Scholar] [CrossRef]
- Li, Q.; Jiang, B.; Guo, J.; Shao, H.; Del Priore, I.S.; Chang, Q.; Kudo, R.; Li, Z.; Razavi, P.; Liu, B.; et al. INK4 tumor suppressor proteins mediate resistance to CDK4/6 kinase inhibitors. Cancer Discov. 2022, 12, 356–371. [Google Scholar] [CrossRef]
- Takahashi-Yanaga, F.; Sasaguri, T. GSK-3beta regulates cyclin D1 expression: A new target for chemotherapy. Cell. Signal. 2008, 20, 581–589. [Google Scholar] [CrossRef]
- Bhattacharya, R.; Mustafi, S.B.; Street, M.; Dey, A.; Dwivedi, S.K. Bmi-1: At the crossroads of physiological and pathological biology. Genes Dis. 2015, 2, 225–239. [Google Scholar] [CrossRef]
- Zhao, M.; Mishra, L.; Deng, C.X. The role of TGF-beta/SMAD4 signaling in cancer. Int. J. Biol. Sci. 2018, 14, 111–123. [Google Scholar] [CrossRef]
- Li, M.Y.; Liu, J.Q.; Chen, D.P.; Li, Z.Y.; Qi, B.; He, L.; Yu, Y.; Yin, W.J.; Wang, M.Y.; Lin, L. Radiotherapy induces cell cycle arrest and cell apoptosis in nasopharyngeal carcinoma via the ATM and Smad pathways. Cancer Biol. Ther. 2017, 18, 681–693. [Google Scholar] [CrossRef]
- Chiang, C.Y.; Tu, H.P.; Chen, Y.T.; Chin, Y.T.; Lai, T.M.; Chiu, H.C.; Nieh, S.; Fu, E. Up-regulation of retinoblastoma protein phosphorylation in gingiva after cyclosporine A treatment: An in vivo and in vitro study. J. Periodontal Res. 2011, 46, 158–163. [Google Scholar] [CrossRef]
- Xu, J.; Walsh, S.B.; Verney, Z.M.; Kopelovich, L.; Elmets, C.A.; Athar, M. Procarcinogenic effects of cyclosporine A are mediated through the activation of TAK1/TAB1 signaling pathway. Biochem. Biophys. Res. Commun. 2011, 408, 363–368. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, M.; Chen, N.; Ma, A.; Zhu, C.; Zhao, R.; Jiang, M.; Zhou, J.; Ye, L.; Fu, H.; et al. Glycyrrhetinic acid induces G1-phase cell cycle arrest in human non-small cell lung cancer cells through endoplasmic reticulum stress pathway. Int. J. Oncol. 2015, 46, 981–988. [Google Scholar] [CrossRef]
- Smith, H.L.; Southgate, H.; Tweddle, D.A.; Curtin, N.J. DNA damage checkpoint kinases in cancer. Expert Rev. Mol. Med. 2020, 22, e2. [Google Scholar] [CrossRef]
- Csergeová, L.; Krbušek, D.; Janoštiak, R. CIP/KIP and INK4 families as hostages of oncogenic signaling. Cell Div. 2024, 19, 11. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.; Geng, Y.; Zhou, Y.; Sicinski, P. Cyclin E in normal physiology and disease states. Trends Cell Biol. 2021, 31, 732–746. [Google Scholar] [CrossRef] [PubMed]
- Karimian, A.; Ahmadi, Y.; Yousefi, B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair 2016, 42, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z. Regulation of cell cycle progression by growth factor-induced cell signaling. Cells 2021, 10, 3327. [Google Scholar] [CrossRef]
- Alexaki, V.I.; Javelaud, D.; Mauviel, A. JNK supports survival in melanoma cells by controlling cell cycle arrest and apoptosis. Pigment Cell Melanoma Res. 2008, 21, 429–438. [Google Scholar] [CrossRef]
- Du, L.; Lyle, C.S.; Obey, T.B.; Gaarde, W.A.; Muir, J.A.; Bennett, B.L.; Chambers, T.C. Inhibition of cell proliferation and cell cycle progression by specific inhibition of basal JNK activity: Evidence that mitotic Bcl-2 phosphorylation is JNK-independent. J. Biol. Chem. 2004, 279, 11957–11966. [Google Scholar] [CrossRef]
Gene Symbol | Sequence (5′-3′) | Product Size, bp | GenBank Accession No. |
---|---|---|---|
BMI1 | F: GCTCATCCTTCTGCTGATGC | 224 | OP680450.1 |
R: TGCATCACAGTCATTGCTGC | |||
CDC25A | F: CAAGGGTGCAGTGAACTTGC | 95 | NM_001789.3 |
R: CAACAATGACACGCTTGCCA | |||
CDK4 | F: ACTCTGAAGCCGACCAGTTG | 84 | NM_000075.4 |
R: GCAGGGATACATCTCGAGGC | |||
CDK6 | F: GTGTGCACAGTGTCACGAAC | 194 | NM_001259.8 |
R: AGATCGCGATGCACTACTCG | |||
CYCLIN D | F: AGCTGTGCATCTACACCGAC | 160 | NM_053056.3 |
R: TGTTTGTTCTCCTCCGCCTC | |||
GSK3B | F: GAAGTGCAAAGCAGCTGGTC | 133 | NM_002093.4 |
R: ACACAGCCAGCAGACCATAC | |||
MYC | F: CATCAGCACAACTACGCAGC | 169 | NM_002467.6 |
R: CGTTGTGTGTTCGCCTCTTG | |||
P15 | F: AGCCCAGGTCTCCTAGGAAG | 214 | NM_004936.4 |
R: CGCACCTTCTCCACTAGTCC | |||
P16 | F: ACCAGAGGCAGTAACCATGC | 93 | NM_000077.5 |
R: CCGAGGTTTCTCAGAGCCTC | |||
P18 | F: GCATCACTCTCCTTCCTCGG | 288 | NM_001262.3 |
R: TTCGGTGGCCCTCAAGTTAC | |||
P19 | F: CCAATGTCCAGGACACCTCC | 166 | U40343.1 |
R: ACAGCAGTGTGACCCTCTTG | |||
RB1 | F: ATGTCTTTATTGGCGTGCGC | 123 | NM_000321.3 |
R: AGAGCCATGCAAGGGATTCC | |||
SMAD3 | F: TCTGAGAGGGCCAAATGCTG | 86 | NM_005902.4 |
R: CAGGGGGCTTCCTGTGTAAG | |||
SMAD4 | F: TGGTAGAGGCCAGCTTTGTG | 103 | NM_005359.6 |
R: TCAATCCAAGCCCGTGAGTC | |||
GAPDH | F: GCACCGTCAAGGCTGAGAAC | 138 | NM_002046.5 |
R: TGGTGAAGACGCCAGTGGA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takeuchi, R.; Kuwahara, N.; Amino, Y.; Hayashi, S.; Taguchi, C.; Suzuki, I.; Suzuki, H.; Nagashima, T.; Arikawa, K.; Okada, Y.; et al. Cyclosporine A Causes Gingival Overgrowth by Promoting Entry into the S Phase at the G1/S Cell Cycle Checkpoint in Gingival Fibroblasts Exposed to Lipopolysaccharide. Diseases 2024, 12, 322. https://doi.org/10.3390/diseases12120322
Takeuchi R, Kuwahara N, Amino Y, Hayashi S, Taguchi C, Suzuki I, Suzuki H, Nagashima T, Arikawa K, Okada Y, et al. Cyclosporine A Causes Gingival Overgrowth by Promoting Entry into the S Phase at the G1/S Cell Cycle Checkpoint in Gingival Fibroblasts Exposed to Lipopolysaccharide. Diseases. 2024; 12(12):322. https://doi.org/10.3390/diseases12120322
Chicago/Turabian StyleTakeuchi, Reiri, Noriko Kuwahara, Yuta Amino, Sachiyo Hayashi, Chieko Taguchi, Itaru Suzuki, Haruka Suzuki, Teruaki Nagashima, Kazumune Arikawa, Yuichiro Okada, and et al. 2024. "Cyclosporine A Causes Gingival Overgrowth by Promoting Entry into the S Phase at the G1/S Cell Cycle Checkpoint in Gingival Fibroblasts Exposed to Lipopolysaccharide" Diseases 12, no. 12: 322. https://doi.org/10.3390/diseases12120322
APA StyleTakeuchi, R., Kuwahara, N., Amino, Y., Hayashi, S., Taguchi, C., Suzuki, I., Suzuki, H., Nagashima, T., Arikawa, K., Okada, Y., Nomoto, T., & Hiratsuka, K. (2024). Cyclosporine A Causes Gingival Overgrowth by Promoting Entry into the S Phase at the G1/S Cell Cycle Checkpoint in Gingival Fibroblasts Exposed to Lipopolysaccharide. Diseases, 12(12), 322. https://doi.org/10.3390/diseases12120322