Thioredoxin System Protein Expression in Carcinomas of the Pancreas, Distal Bile Duct, and Ampulla in the United Kingdom
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Samples
2.2. Western Blotting
2.3. Tissue Microarray and Immunohistochemistry
2.4. Statistical Analysis
3. Results
3.1. Association between the Expression of Trx System Proteins and Clinicopathological Features
3.2. Relationship between the Expression of Trx System Proteins and Clinical Outcome
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Cancer Research UK. Pancreatic Cancer Statistics. Available online: https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/pancreatic-cancer#heading-One (accessed on 3 April 2024).
- Walter, D.; Schnitzbauer, A.A.; Schulze, F.; Trojan, J. The diagnosis and treatment of ampullary carcinoma. Dtsch. Ärztebl. Int. 2023, 120, 729–735. [Google Scholar] [CrossRef] [PubMed]
- Roos, E.; Strijker, M.; Franken, L.C.; Busch, O.R.; van Hooft, J.E.; Klümpen, H.J.; van Laarhoven, H.W.; Wilmink, J.W.; Verheij, J.; van Gulik, T.M.; et al. Comparison of short- and long-term outcomes between anatomical subtypes of resected biliary tract cancer in a Western high-volume center. HPB 2020, 22, 405–414. [Google Scholar] [CrossRef] [PubMed]
- De Castro, S.M.; Van Heek, N.T.; Kuhlmann, K.F.; Busch, O.R.; Offerhaus, G.J.; van Gulik, T.M.; Obertop, H.; Gouma, D.J. Surgical management of neoplasms of the ampulla of Vater: Local resection or pancreatoduodenectomy and prognostic factors for survival. Surgery 2004, 136, 994–1002. [Google Scholar] [CrossRef] [PubMed]
- Sen, C.K.; Packer, L. Antioxidant and redox regulation of gene transcription. FASEB J. 1996, 10, 709–720. [Google Scholar] [CrossRef]
- Saitoh, M.; Nishitoh, H.; Fujii, M.; Takeda, K.; Tobiume, K.; Sawada, Y.; Kawabata, M.; Miyazono, K.; Ichijo, H. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 1998, 17, 2596–2606. [Google Scholar] [CrossRef]
- Mochizuki, M.; Kwon, Y.W.; Yodoi, J.; Masutani, H. Thioredoxin regulates cell cycle via the ERK1/2-cyclin D1 pathway. Antioxid. Redox Signal. 2009, 11, 2957–2971. [Google Scholar] [CrossRef]
- Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta 2016, 1863, 2977–2992. [Google Scholar] [CrossRef]
- Monteiro, H.P.; Ogata, F.T.; Stern, A. Thioredoxin promotes survival signaling events under nitrosative/oxidative stress associated with cancer development. Biomed. J. 2017, 40, 189–199. [Google Scholar] [CrossRef]
- Mohammadi, F.; Soltani, A.; Ghahremanloo, A.; Javid, H.; Hashemy, S.I. The thioredoxin system and cancer therapy: A review. Cancer Chemother. Pharmacol. 2019, 84, 925–935. [Google Scholar] [CrossRef]
- Abdullah, N.A.; Inman, M.; Moody, C.J.; Storr, S.J.; Martin, S.G. Cytotoxic and radiosensitising effects of a novel thioredoxin reductase inhibitor in breast cancer. Investig. New Drugs 2021, 39, 1232–1241. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.Y.; Chen, H.Y.; Mathew, R.; Fan, J.; Strohecker, A.M.; Karsli-Uzunbas, G.; Kamphorst, J.J.; Chen, G.; Lemons, J.M.S.; Karantza, V.; et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev. 2011, 25, 460–470. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Wang, X.; Contino, G.; Liesa, M.; Sahin, E.; Ying, H.; Bause, A.; Li, Y.; Stommel, J.M.; Dell’antonio, G.; et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev. 2011, 25, 717–729. [Google Scholar] [CrossRef]
- Zhang, Y.; Martin, S.G. Redox proteins and radiotherapy. Clin. Oncol. (R. Coll. Radiol.) 2014, 26, 289–300. [Google Scholar] [CrossRef]
- Powis, G.; Montfort, W.R. Properties and biological activities of thioredoxins. Annu. Rev. Biophys. Biomol. Struct. 2001, 30, 421–455. [Google Scholar] [CrossRef] [PubMed]
- Baker, A.; Payne, C.M.; Briehl, M.M.; Powis, G. Thioredoxin, a gene found overexpressed in human cancer, inhibits apoptosis in vitro and in vivo. Cancer Res. 1997, 57, 5162–5167. [Google Scholar]
- Conrad, M.; Jakupoglu, C.; Moreno, S.G.; Lippl, S.; Banjac, A.; Schneider, M.; Beck, H.; Hatzopoulos, A.K.; Just, U.; Sinowatz, F.; et al. Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart function. Mol. Cell. Biol. 2004, 24, 9414–9423. [Google Scholar] [CrossRef]
- Huang, Q.; Zhou, H.J.; Zhang, H.; Huang, Y.; Hinojosa-Kirschenbaum, F.; Fan, P.; Yao, L.; Belardinelli, L.; Tellides, G.; Giordano, F.J.; et al. Thioredoxin-2 inhibits mitochondrial reactive oxygen species generation and apoptosis stress kinase-1 activity to maintain cardiac function. Circulation 2015, 131, 1082–1097. [Google Scholar] [CrossRef]
- Go, Y.M.; Ziegler, T.R.; Johnson, J.M.; Gu, L.; Hansen, J.M.; Jones, D.P. Selective protection of nuclear thioredoxin-1 and glutathione redox systems against oxidation during glucose and glutamine deficiency in human colonic epithelial cells. Free Radic. Biol. Med. 2007, 42, 363–370. [Google Scholar] [CrossRef]
- Nishiyama, A.; Matsui, M.; Iwata, S.; Hirota, K.; Masutani, H.; Nakamura, H.; Takagi, Y.; Sono, H.; Gon, Y.; Yodoi, J. Identification of thioredoxin-binding protein-2/vitamin D(3) up-regulated protein 1 as a negative regulator of thioredoxin function and expression. J. Biol. Chem. 1999, 274, 21645–21650. [Google Scholar] [CrossRef]
- Arnér, E.S.; Holmgren, A. Physiological functions of thioredoxin and thioredoxin reductase. Eur. J. Biochem. 2000, 267, 6102–6109. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Siegel, D.; Newsome, J.; Chilloux, A.; Moody, C.J.; Ross, D. Antitumor indolequinones induced apoptosis in human pancreatic cancer cells via inhibition of thioredoxin reductase and activation of redox signaling. Mol. Pharmacol. 2012, 81, 401–410. [Google Scholar] [CrossRef]
- Yamawaki, H.; Pan, S.; Lee, R.T.; Berk, B.C. Fluid shear stress inhibits vascular inflammation by decreasing thioredoxin-interacting protein in endothelial cells. J. Clin. Investig. 2005, 115, 733–738. [Google Scholar] [CrossRef]
- Woolston, C.M.; Deen, S.; Al-Attar, A.; Shehata, M.; Chan, S.Y.; Martin, S.G. Redox protein expression predicts progression-free and overall survival in ovarian cancer patients treated with platinum-based chemotherapy. Free Radic. Biol. Med. 2010, 49, 1263–1272. [Google Scholar] [CrossRef] [PubMed]
- Woolston, C.M.; Storr, S.J.; Ellis, I.O.; Morgan, D.A.; Martin, S.G. Expression of thioredoxin system and related peroxiredoxin proteins is associated with clinical outcome in radiotherapy treated early stage breast cancer. Radiother. Oncol. 2011, 100, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Woolston, C.M.; Zhang, L.; Storr, S.J.; Al-Attar, A.; Shehata, M.; Ellis, I.O.; Chan, S.Y.; Martin, S.G. The prognostic and predictive power of redox protein expression for anthracycline-based chemotherapy response in locally advanced breast cancer. Mod. Pathol. 2012, 25, 1106–1116. [Google Scholar] [CrossRef]
- Woolston, C.M.; Madhusudan, S.; Soomro, I.N.; Lobo, D.N.; Reece-Smith, A.M.; Parsons, S.L.; Martin, S.G. Thioredoxin interacting protein and its association with clinical outcome in gastro-oesophageal adenocarcinoma. Redox Biol. 2013, 1, 285–291. [Google Scholar] [CrossRef]
- Mollbrink, A.; Jawad, R.; Vlamis-Gardikas, A.; Edenvik, P.; Isaksson, B.; Danielsson, O.; Stål, P.; Fernandes, A.P. Expression of thioredoxins and glutaredoxins in human hepatocellular carcinoma: Correlation to cell proliferation, tumor size and metabolic syndrome. Int. J. Immunopathol. Pharmacol. 2014, 27, 169–183. [Google Scholar] [CrossRef]
- Cai, Z.; Zhang, C.; Zou, Y.; Lu, C.; Hu, H.; Qian, J.; Jiang, L.; Hu, G. Tissue thioredoxin-interacting protein expression predicted recurrence in patients with meningiomas. Int. J. Clin. Oncol. 2017, 22, 660–666. [Google Scholar] [CrossRef]
- Schultz, M.A.; Diaz, A.M.; Smite, S.; Lay, A.R.; DeCant, B.; McKinney, R.; Mascarinas, W.E.; Xia, Y.; Neumann, C.; Bentrem, D.; et al. Thioredoxin system-mediated regulation of mutant Kras associated pancreatic neoplasia and cancer. Oncotarget 2017, 8, 92667–92681. [Google Scholar] [CrossRef]
- Nakamura, H.; Bai, J.; Nishinaka, Y.; Ueda, S.; Sasada, T.; Ohshio, G.; Imamura, M.; Takabayashi, A.; Yamaoka, Y.; Yodoi, J. Expression of thioredoxin and glutaredoxin, redox-regulating proteins, in pancreatic cancer. Cancer Detect. Prev. 2000, 24, 53–60. [Google Scholar]
- Schröder, J.; Schumacher, U.; Böckelmann, L.C. Thioredoxin interacting protein (TXNIP) is differentially expressed in human tumor samples but is absent in human tumor cell line xenografts: Implications for its use as an immunosurveillance marker. Cancers 2020, 12, 3028. [Google Scholar] [CrossRef] [PubMed]
- Isohookana, J.; Haapasaari, K.M.; Soini, Y.; Karihtala, P. Loss of peroxiredoxin expression is associated with an aggressive phenotype in pancreatic adenocarcinoma. Anticancer Res. 2016, 36, 427–433. [Google Scholar]
- McShane, L.M.; Altman, D.G.; Sauerbrei, W.; Taube, S.E.; Gion, M.; Clark, G.M.; Statistics Subcommittee of NCI-EORTC Working Group on Cancer Diagnostics. REporting recommendations for tumor MARKer prognostic studies (REMARK). Breast Cancer Res. Treat. 2006, 100, 229–235. [Google Scholar] [CrossRef]
- Higuera, O.; Ghanem, I.; Nasimi, R.; Prieto, I.; Koren, L.; Feliu, J. Management of pancreatic cancer in the elderly. World J. Gastroenterol. 2016, 22, 764. [Google Scholar] [CrossRef] [PubMed]
- Ellison, L. Age-Specific Patterns in the Incidence of, and Survival from, Pancreatic Cancer in Canada; Statistics Canada: Ottawa, ON, Canada, 2017. [Google Scholar]
- Edge, S.B.; Compton, C.C. The American Joint Committee on Cancer: The 7th edition of the AJCC cancer staging manual and the future of TNM. Ann. Surg. Oncol. 2010, 17, 1471–1474. [Google Scholar] [CrossRef] [PubMed]
- Storr, S.J.; Zaitoun, A.M.; Arora, A.; Durrant, L.G.; Lobo, D.N.; Madhusudan, S.; Martin, S.G. Calpain system protein expression in carcinomas of the pancreas, bile duct and ampulla. BMC Cancer 2012, 12, 511. [Google Scholar] [CrossRef] [PubMed]
- Camp, R.L.; Dolled-Filhart, M.; Rimm, D.L. X-tile: A new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin. Cancer Res. 2004, 10, 7252–7259. [Google Scholar] [CrossRef]
- Beger, H.G.; Treitschke, F.; Gansauge, F.; Harada, N.; Hiki, N.; Mattfeldt, T. Tumor of the ampulla of Vater: Experience with local or radical resection in 171 consecutively treated patients. Arch. Surg. 1999, 134, 526–532. [Google Scholar] [CrossRef]
- Launois, B.; Terblanche, J.; Lakehal, M.; Catheline, J.M.; Bardaxoglou, E.; Landen, S.; Campion, J.P.; Sutherland, F.; Meunier, B. Proximal bile duct cancer: High resectability rate and 5-year survival. Ann. Surg. 1999, 230, 266–275. [Google Scholar] [CrossRef]
- Iwasawa, S.; Yamano, Y.; Takiguchi, Y.; Tanzawa, H.; Tatsumi, K.; Uzawa, K. Upregulation of thioredoxin reductase 1 in human oral squamous cell carcinoma. Oncol. Rep. 2011, 25, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Raffel, J.; Bhattacharyya, A.K.; Gallegos, A.; Cui, H.; Einspahr, J.G.; Alberts, D.S.; Powis, G. Increased expression of thioredoxin-1 in human colorectal cancer is associated with decreased patient survival. J. Lab. Clin. Med. 2003, 142, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.Y.; Yoon, S.O.; Hong, S.W.; Kim, J.W.; Choi, S.H.; Cho, J.Y. Thioredoxin and thioredoxin-interacting protein as prognostic markers for gastric cancer recurrence. World. J. Gastroenterol. 2012, 18, 5581–5588. [Google Scholar] [CrossRef]
- Yao, A.; Storr, S.J.; Al-Hadyan, K.; Rahman, R.; Smith, S.; Grundy, R.; Paine, S.; Martin, S.G. Thioredoxin system protein expression is associated with poor clinical outcome in adult and paediatric gliomas and medulloblastomas. Mol. Neurobiol. 2020, 57, 2889–2901. [Google Scholar] [CrossRef]
- Vassilakopoulos, P.T.; Levidou, G.; Milionis, V.; Hartmann, S.; Lakiotaki, E.; Sepsa, A.; Thymara, I.; Ntailiani, P.; Spanou, K.; Angelopoulou, M.K.; et al. Thioredoxin-1, chemokine (C-X-C motif) ligand-9 and interferon-γ expression in the neoplastic cells and macrophages of Hodgkin lymphoma: Clinicopathologic correlations and potential prognostic implications. Leuk. Lymphoma 2017, 58, 2227–2239. [Google Scholar] [CrossRef] [PubMed]
- Azuma, K.; Komohara, Y.; Sasada, T.; Terazaki, Y.; Ikeda, J.; Hoshino, T.; Itoh, K.; Yamada, A.; Aizawa, H. Excision repair cross-complementation group 1 predicts progression-free and overall survival in non-small cell lung cancer patients treated with platinum-based chemotherapy. Cancer Sci. 2007, 98, 1336–1343. [Google Scholar] [CrossRef]
- Yan, C.; Shieh, B.; Reigan, P.; Zhang, Z.; Colucci, M.A.; Chilloux, A.; Newsome, J.J.; Siegel, D.; Chan, D.; Moody, C.J.; et al. Potent activity of indolequinones against human pancreatic cancer: Identification of thioredoxin reductase as a potential target. Mol. Pharmacol. 2009, 76, 163–172. [Google Scholar] [CrossRef]
- Selenius, M.; Hedman, M.; Brodin, D.; Gandin, V.; Rigobello, M.P.; Flygare, J.; Marzano, C.; Bindoli, A.; Brodin, O.; Björnstedt, M.; et al. Effects of redox modulation by inhibition of thioredoxin reductase on radiosensitivity and gene expression. J. Cell. Mol. Med. 2012, 16, 1593–1605. [Google Scholar] [CrossRef]
- Rodman, S.N.; Spence, J.M.; Ronnfeldt, T.J.; Zhu, Y.; Solst, S.R.; O’Neill, R.A.; Allen, B.G.; Guan, X.; Spitz, D.R.; Fath, M.A. Enhancement of radiation response in breast cancer stem cells by inhibition of thioredoxin- and glutathione-dependent metabolism. Radiat. Res. 2016, 186, 385–395. [Google Scholar] [CrossRef]
- Wang, H.; Bouzakoura, S.; de Mey, S.; Jiang, H.; Law, K.; Dufait, I.; Corbet, C.; Verovski, V.; Gevaert, T.; Feron, O.; et al. Auranofin radiosensitizes tumor cells through targeting thioredoxin reductase and resulting overproduction of reactive oxygen species. Oncotarget 2017, 8, 35728–35742. [Google Scholar] [CrossRef]
- Ramanathan, R.K.; Abbruzzese, J.; Dragovich, T.; Kirkpatrick, L.; Guillen, J.M.; Baker, A.F.; Pestano, L.A.; Green, S.; Von Hoff, D.D. A randomized phase II study of PX-12, an inhibitor of thioredoxin in patients with advanced cancer of the pancreas following progression after a gemcitabine-containing combination. Cancer Chemother. Pharmacol. 2011, 67, 503–509. [Google Scholar] [CrossRef] [PubMed]
Characteristic | PDAC Cohort (n = 85) | Distal Bile Duct and Ampullary Cancer Cohort (n = 145) |
---|---|---|
Frequency (%) | Frequency (%) | |
Age | ||
≤60 years | 27 (31.8) | 46 (31.7) |
>60 years | 56 (65.9) | 98 (67.6) |
Sex | ||
Male | 52 (61.2) | 81 (55.9) |
Female | 33 (38.8) | 64 (44.1) |
Tumor size | ||
≤2 cm | 6 (7.1) | 56 (38.6) |
>2 cm | 77 (90.6) | 87 (60) |
Tumor stage | ||
1 | 1 (1.2) | 3 (2.1) |
2 | 18 (21.2) | 30 (20.7) |
3 | 62 (72.9) | 106 (73.1) |
4 | 3 (3.5) | 5 (3.4) |
Lymph node stage | ||
Negative | 28 (32.9) | 52 (35.9) |
Positive | 54 (63.5) | 85 (58.6) |
Vascular invasion | ||
Absent | 30 (35.3) | 55 (37.9) |
Present | 54 (63.5) | 88 (60.7) |
Perineural invasion | ||
Absent | 15 (17.6) | 60 (41.4) |
Present | 69 (81.2) | 84 (57.9) |
Variable | Trx (Cytoplasmic) | Trx (Nuclear) | TxNIP | ||||||
---|---|---|---|---|---|---|---|---|---|
Low | High | p-Value | Low | High | p-Value | Low | High | p-Value | |
Age | |||||||||
≤60 years | 17 (13.1) | 25 (19.2) | 0.865 | 18 (13.8) | 24 (18.5) | 0.401 | 16 (11.9) | 30 (22.4) | 0.049 * |
>60 years | 37 (28.5) | 51 (39.2) | 31 (23.8) | 57 (43.8) | 17 (12.7) | 71 (53.0) | |||
Sex | |||||||||
Male | 26 (19.8) | 47 (35.9) | 0.144 | 25 (19.1) | 48 (36.6) | 0.402 | 17 (12.6) | 57 (42.2) | 0.514 |
Female | 28 (21.4) | 30 (22.9) | 24 (18.3) | 34 (26.0) | 17 (12.6) | 44 (32.6) | |||
Tumor size | |||||||||
≤2 cm | 16 (12.3) | 32 (24.6) | 0.187 | 18 (13.8) | 30 (23.1) | 0.917 | 11 (8.20) | 39 (29.1) | 0.489 |
>2 cm | 37 (28.5) | 45 (34.6) | 30 (23.1) | 52 (40.0) | 23 (17.2) | 61 (45.5) | |||
Tumor stage | |||||||||
1 | 1 (0.8) | 2 (1.5) | 0.778 | 2 (1.5) | 1 (0.8) | 0.329 | 0 (0.0) | 3 (2.2) | 0.497 |
2 | 11 (8.4) | 16 (12.2) | 12 (9.2) | 15 (11.5) | 5 (3.7) | 23 (17.0) | |||
3 | 41 (31.3) | 55 (42.0) | 32 (24.4) | 64 (48.9) | 28 (20.7) | 71 (52.6) | |||
4 | 1 (0.8) | 4 (3.1) | 3 (2.3) | 2 (1.5) | 1 (0.7) | 4 (3.0) | |||
Node status | |||||||||
Negative | 17 (13.5) | 29 (23.0) | 0.456 | 17 (13.5) | 29 (23.0) | 0.937 | 27 (20.9) | 22 (17.1) | 0.573 |
Positive | 35 (27.8) | 45 (35.7) | 29 (23.0) | 51 (40.5) | 40 (31.0) | 40 (31.0) | |||
Vascular invasion | |||||||||
Absent | 21 (16.2) | 29 (22.3) | 0.821 | 22 (16.9) | 28 (21.5) | 0.186 | 11 (8.2) | 41 (30.6) | 0.371 |
Present | 32 (24.6) | 48 (36.9) | 26 (20.0) | 54 (41.5) | 23 (17.2) | 59 (44.0) | |||
Perineural invasion | |||||||||
Absent | 21 (16.0) | 36 (27.5) | 0.371 | 26 (19.8) | 31 (23.7) | 0.088 | 9 (6.7) | 49 (36.3) | 0.025 * |
Present | 33 (25.2) | 41 (31.3) | 23 (17.6) | 51 (38.9) | 25 (18.5) | 52 (38.5) |
Variable | TrxR (Cytoplasmic) | TrxR (Nuclear) | ||||
---|---|---|---|---|---|---|
Low | High | p-Value | Low | High | p-Value | |
Age | ||||||
≤60 years | 41 (30.6) | 4 (3.00) | 0.773 | 30 (22.4) | 15 (11.2) | 0.024 * |
>60 years | 79 (59.0) | 10 (7.50) | 41 (30.6) | 48 (35.8) | ||
Sex | ||||||
Male | 68 (50.4) | 8 (5.90) | 0.946 | 37 (27.4) | 39 (28.9) | 0.219 |
Female | 53 (39.3) | 6 (4.40) | 35 (25.9) | 24 (17.8) | ||
Tumor size | ||||||
≤2 cm | 47 (35.1) | 5 (3.70) | 0.802 | 30 (22.4) | 22 (16.4) | 0.385 |
>2 cm | 73.1 (54.5) | 9 (6.70) | 41 (30.6) | 41 (30.6) | ||
Tumor stage | ||||||
1 | 3 (2.2) | 0 (0.0) | 0.100 | 2 (1.5) | 1 (0.7) | 0.461 |
2 | 23 (17.0) | 4 (3.0) | 14 (10.4) | 13 (9.6) | ||
3 | 92 (68.1) | 8 (5.9) | 55 (40.7) | 45 (33.3) | ||
4 | 3 (2.2) | 2 (1.5) | 1 (0.7) | 4 (3.0) | ||
Node status | ||||||
Negative | 9 (7.0) | 38 (29.5) | 0.326 | 43 (33.3) | 6 (4.7) | 0.522 |
Positive | 22 (17.1) | 60 (46.5) | 73 (56.6) | 7 (5.4) | ||
Vascular invasion | ||||||
Absent | 44 (32.8) | 5 (3.7) | 0.944 | 35 (26.1) | 14 (10.4) | 0.001 * |
Present | 76 (56.7) | 9 (6.7) | 36 (26.9) | 49 (36.3) | ||
Perineural invasion | ||||||
Absent | 48 (36.5) | 9 (6.7) | 0.077 | 37 (27.4) | 20 (14.8) | 0.021 * |
Present | 73 (54.1) | 5 (3.7) | 35 (25.9) | 43 (31.9) |
A | PDAC cohort | p-value | EXP (B) | 95% CI for EXP (B) | |
Lower | Upper | ||||
Cytoplasmic Trx expression | 0.102 | 0.5 | 0.218 | 1.146 | |
Sex | 0.579 | 1.178 | 0.662 | 2.096 | |
T stage | 0.493 | 0.772 | 0.368 | 1.619 | |
Node status | 0.113 | 1.727 | 0.878 | 3.398 | |
Vascular invasion | 0.833 | 1.068 | 0.581 | 1.962 | |
Perineural invasion | 0.305 | 1.521 | 0.682 | 3.392 | |
Tumor size | 0.221 | 1.825 | 0.697 | 4.784 | |
Patient age | 0.804 | 0.929 | 0.518 | 1.666 | |
Grade | 0.874 | 1.045 | 0.608 | 1.796 | |
B | PDAC cohort | p-value | EXP (B) | 95% CI for EXP (B) | |
Lower | Upper | ||||
Nuclear Trx expression | <0.0001 * | 0.324 | 0.177 | 0.592 | |
Sex | 0.182 | 1.482 | 0.831 | 2.64 | |
T stage | 0.99 | 1.004 | 0.497 | 2.031 | |
Node status | 0.015 | 2.353 | 1.178 | 4.698 | |
Vascular invasion | 0.292 | 1.412 | 0.744 | 2.679 | |
Perineural invasion | 0.985 | 1.008 | 0.458 | 2.217 | |
Tumor size | 0.132 | 2.202 | 0.788 | 6.155 | |
Patient age | 0.601 | 1.176 | 0.642 | 2.154 | |
Grade | 0.644 | 1.135 | 0.664 | 1.94 | |
C | Distal bile duct and ampullary cancer cohort | p-value | EXP (B) | 95% CI for EXP (B) | |
Lower | Upper | ||||
TxNIP expression | 0.013 * | 0.548 | 0.34 | 0.882 | |
T stage | 0.063 | 1.634 | 0.974 | 2.741 | |
Node status | 0.054 | 1.586 | 0.992 | 2.537 | |
Vascular invasion | 0.916 | 0.975 | 0.606 | 1.568 | |
Perineural invasion | 0.251 | 1.309 | 0.827 | 2.073 | |
Grade | 0.05 | 1.5 | 0.999 | 2.251 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Hadyan, K.S.; Storr, S.J.; Zaitoun, A.M.; Lobo, D.N.; Martin, S.G. Thioredoxin System Protein Expression in Carcinomas of the Pancreas, Distal Bile Duct, and Ampulla in the United Kingdom. Diseases 2024, 12, 227. https://doi.org/10.3390/diseases12100227
Al-Hadyan KS, Storr SJ, Zaitoun AM, Lobo DN, Martin SG. Thioredoxin System Protein Expression in Carcinomas of the Pancreas, Distal Bile Duct, and Ampulla in the United Kingdom. Diseases. 2024; 12(10):227. https://doi.org/10.3390/diseases12100227
Chicago/Turabian StyleAl-Hadyan, Khaled S., Sarah J. Storr, Abed M. Zaitoun, Dileep N. Lobo, and Stewart G. Martin. 2024. "Thioredoxin System Protein Expression in Carcinomas of the Pancreas, Distal Bile Duct, and Ampulla in the United Kingdom" Diseases 12, no. 10: 227. https://doi.org/10.3390/diseases12100227
APA StyleAl-Hadyan, K. S., Storr, S. J., Zaitoun, A. M., Lobo, D. N., & Martin, S. G. (2024). Thioredoxin System Protein Expression in Carcinomas of the Pancreas, Distal Bile Duct, and Ampulla in the United Kingdom. Diseases, 12(10), 227. https://doi.org/10.3390/diseases12100227