Acute Changes in Body Muscle Mass and Fat Depletion in Hospitalized Young Trauma Patients: A Descriptive Retrospective Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rogobete, A.F.; Sandesc, D.; Papurica, M.; Stoicescu, E.R.; Popovici, S.E.; Bratu, L.M.; Vernic, C.; Sas, A.M.; Stan, A.T.; Bedreag, O.H. The influence of metabolic imbalances and oxidative stress on the outcome of critically ill polytrauma patients: A review. Burn. Trauma 2017, 5, 8. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.C.; Kim, J.H.; Ryu, S.W.; Moon, J.Y.; Park, J.H.; Park, J.K. Korean Society for Parenteral and Enteral Nutrition (KSPEN) Clinical Research Groups. Prevalence of Malnutrition in Hospitalized Patients: A Multicenter Cross-sectional Study. J. Korean Med. Sci. 2018, 33, e10. [Google Scholar] [CrossRef] [PubMed]
- Dijkink, S.; Meier, K.; Krijnen, P.; Yeh, D.D.; Velmahos, G.C.; Schipper, I.B. Malnutrition and its effects in severely injured trauma patients. Eur. J. Trauma Emerg. Surg. 2020, 46, 993–1004. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Kim, S.J.; Kim, W. Nutritional Intervention for a Critically Ill Trauma Patient: A Case Report. Clin. Nutr. Res. 2022, 11, 153–158. [Google Scholar] [CrossRef]
- Hirsch, K.R.; Wolfe, R.R.; Ferrando, A.A. Pre- and Post-Surgical Nutrition for Preservation of Muscle Mass, Strength, and Functionality Following Orthopedic Surgery. Nutrients 2021, 13, 1675. [Google Scholar] [CrossRef]
- Carbone, J.W.; McClung, J.P.; Pasiakos, S.M. Skeletal muscle responses to negative energy balance: Effects of dietary protein. Adv. Nutr. 2012, 3, 119–126. [Google Scholar] [CrossRef]
- Costello, L.A.; Lithander, F.E.; Gruen, R.L.; Williams, L.T. Nutrition therapy in the optimisation of health outcomes in adult patients with moderate to severe traumatic brain injury: Findings from a scoping review. Injury 2014, 45, 1834–1841. [Google Scholar] [CrossRef]
- Welch, C.; Hassan-Smith, Z.; AGreig, C.; MLord, J.; AJackson, T. Acute Sarcopenia Secondary to Hospitalisation—An Emerging Condition Affecting Older Adults. Aging Dis. 2018, 9, 151–164. [Google Scholar] [CrossRef]
- Akan, B. Influence of sarcopenia focused on critically ill patients. Acute Crit. Care 2021, 36, 15–21. [Google Scholar] [CrossRef]
- Johansson, J.; Strand, B.H.; Morseth, B.; Hopstock, L.A.; Grimsgaard, S. Differences in sarcopenia prevalence between upper-body and lower-body based EWGSOP2 muscle strength criteria: The Tromsø study 2015–2016. BMC Geriatr. 2020, 20, 461. [Google Scholar] [CrossRef]
- Hossain, M.; Yu, D.; Bikdeli, B.; Yu, S. Sarcopenia and Adverse Post-Surgical Outcomes in Geriatric Patients: A Scoping Review. J. Frailty Aging 2021, 10, 63–69. [Google Scholar] [CrossRef]
- Bokshan, S.L.; DePasse, J.M.; Daniels, A.H. Sarcopenia in Orthopedic Surgery. Orthopedics 2016, 39, e295–e300. [Google Scholar] [CrossRef]
- Mitchell, P.M.; Collinge, C.A.; O’Neill, D.E.; Bible, J.E.; Mir, H.R. Sarcopenia Is Predictive of 1-Year Mortality after Acetabular Fractures in Elderly Patients. J. Orthop. Trauma 2018, 32, 278–282. [Google Scholar] [CrossRef]
- Zhang, S.; Tan, S.; Jiang, Y.; Xi, Q.; Meng, Q.; Zhuang, Q.; Han, Y.; Sui, X.; Wu, G. Sarcopenia as a predictor of poor surgical and oncologic outcomes after abdominal surgery for digestive tract cancer: A prospective cohort study. Clin. Nutr. 2019, 38, 2881–2888. [Google Scholar] [CrossRef]
- Lanza, E.; Masetti, C.; Messana, G.; Muglia, R.; Pugliese, N.; Ceriani, R.; Lleo de Nalda, A.; Rimassa, L.; Torzilli, G.; Poretti, D.; et al. Sarcopenia as a predictor of survival in patients undergoing bland transarterial embolization for unresectable hepatocellular carcinoma. PLoS ONE 2020, 15, e0232371. [Google Scholar] [CrossRef]
- Weerink, L.B.M.; van der Hoorn, A.; van Leeuwen, B.L.; de Bock, G.H. Low skeletal muscle mass and postoperative morbidity in surgical oncology: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 2020, 11, 636–649. [Google Scholar] [CrossRef] [PubMed]
- Dhaliwal, A.; Williams, F.R.; El-sherif, O.; Armstrong, M.J. Sarcopenia in Liver Trans-plantation: An Update. Curr. Hepatol. Rep. 2020, 19, 128–137. [Google Scholar] [CrossRef]
- Englesbe, M.J.; Patel, S.P.; He, K.; Lynch, R.J.; Schaubel, D.E.; Harbaugh, C.; Holcombe, S.A.; Wang, S.C.; Segev, D.L.; Sonnenday, C.J. Sarcopenia and mortality after liver transplantation. J. Am. Coll. Surg. 2010, 211, 271–278. [Google Scholar] [CrossRef]
- Xi, F.; Tan, S.; Gao, T.; Ding, W.; Song, Y.; Yang, J.; Li, W.; Yu, W. Sarcopenia associated with 90-day readmission and overall survival after abdominal trauma. Asia Pac. J. Clin. Nutr. 2020, 29, 724–731. [Google Scholar] [CrossRef]
- El-Menyar, A.; Jabbour, G.; Asim, M.; Abdelrahman, H.; Mahmood, I.; Al-Thani, H. Shock index in patients with traumatic solid organ injury as a predictor of massive blood trans-fusion protocol activation. Inj. Epidemiol. 2019, 6, 41. [Google Scholar] [CrossRef]
- El-Menyar, A.; Mekkodathil, A.; Asim, M.; Consunji, R.; Strandvik, G.; Peralta, R.; Rizoli, S.; Abdelrahman, H.; Mollazehi, M.; Parchani, A.; et al. Maturation process and international accreditation of trauma system in a rapidly developing country. PLoS ONE 2020, 15, e0243658. [Google Scholar] [CrossRef] [PubMed]
- El-Menyar, A.; Abdelrahman, H.; Al-Thani, H.; Mekkodathil, A.; Singh, R.; Rizoli, S. The FASILA Score: A Novel Bio-Clinical Score to Predict Massive Blood Transfusion in Patients with Abdominal Trauma. World J. Surg. 2020, 44, 1126–1136. [Google Scholar] [CrossRef] [PubMed]
- Giovannini, S.; Brau, F.; Forino, R.; Berti, A.; D’Ignazio, F.; Loreti, C.; Bellieni, A.; D’Angelo, E.; Di Caro, F.; Biscotti, L.; et al. Sarcopenia: Diagnosis and Management, State of the Art and Contribution of Ultrasound. J. Clin. Med. 2021, 10, 5552. [Google Scholar] [CrossRef] [PubMed]
- Leeper, C.M.; Lin, E.; Hoffman, M.; Fombona, A.; Zhou, T.; Kutcher, M.; Rosengart, M.; Watson, G.; Billiar, T.; Peitzman, A.; et al. Computed tomography abbreviated assessment of sarcopenia following trauma: The CAAST measurement predicts 6-month mortality in older adult trauma patients. J. Trauma Acute Care Surg. 2016, 80, 805–811. [Google Scholar] [CrossRef] [PubMed]
- Dickerson, R.N.; Pitts, S.L.; Maish III, G.O.; Schroeppel, T.J.; Magnotti, L.J.; Croce, M.A.; Minard, G.; Brown, R.O. A reappraisal of nitrogen requirements for patients with critical illness and trauma. J. Trauma Acute Care Surg. 2012, 73, 549–557. [Google Scholar] [CrossRef]
- Foley, N.; Marshall, S.; Pikul, J.; Salter, K.; Teasell, R. Hypermetabolism following moder-ate to severe traumatic acute brain injury: A systematic review. J. Neurotrauma 2008, 25, 1415–1431. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 2019, 48, 601. [Google Scholar] [CrossRef] [PubMed]
- Hughes, V.A.; Frontera, W.R.; Roubenoff, R.; Evans, W.J.; Singh, M.A. Longitudinal changes in body composition in older men and women: Role of body weight change and physical activity. Am. J. Clin. Nutr. 2002, 76, 473–481. [Google Scholar] [CrossRef]
- Bahat, G.; Ilhan, B. Sarcopenia and the Cardiometabolic Syndrome: A Narrative Review. Eur. Geriatr. Med. 2016, 7, 220–223. Available online: https://www.em-consulte.com/en/article/1055336 (accessed on 8 September 2023). [CrossRef]
- Yin, J.; Wang, J.; Zhang, S.; Yao, D.; Mao, Q.; Kong, W.; Ren, L.; Li, Y.; Li, J. Early versus delayed enteral feeding in patients with abdominal trauma: A retrospective cohort study. Eur. J. Trauma Emerg. Surg. 2015, 41, 99–105. [Google Scholar] [CrossRef]
- Chabot, E.; Nirula, R. Open abdomen critical care management principles: Resuscitation, fluid balance, nutrition, and ventilator management. Trauma Surg. Acute Care Open 2017, 2, e000063. [Google Scholar] [CrossRef] [PubMed]
- Moreira, E.; Burghi, G.; Manzanares, W. Update on metabolism and nutrition therapy in critically ill burn patients. Med. Intensiv. 2018, 42, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Lenz, A.; Franklin, G.A.; Cheadle, W.G. Systemic inflammation after trauma. Injury 2007, 38, 1336–1345. [Google Scholar] [CrossRef] [PubMed]
- Soeters, P.B.; Grimble, R.F. Dangers, and benefits of the cytokine mediated response to injury and infection. Clin. Nutr. 2009, 28, 583–596. [Google Scholar] [CrossRef]
- Liu, Z.J.; Zhu, C.F. Causal relationship between insulin resistance and sarcopenia. Diabetol. Metab. Syndr. 2023, 15, 46. [Google Scholar] [CrossRef]
- Koh, F.H.; Chua, J.M.; Tan, J.L.; Foo, F.J.; Tan, W.J.; Sivarajah, S.S.; Ho, L.M.L.; Teh, B.T.; Chew, M.H. Paradigm shift in gastrointestinal surgery—Combating sarcopenia with prehabilitation: Multimodal review of clinical and scientific data. World J. Gastrointest. Surg. 2021, 13, 734–755. [Google Scholar] [CrossRef]
- Norman, K.; Pichard, C.; Lochs, H.; Pirlich, M. Prognostic impact of disease-related malnutrition. Clin. Nutr. 2008, 27, 5–15. [Google Scholar] [CrossRef]
- Kondrup, J.; Johansen, N.; Plum, L.M.; Bak, L.; Larsen, I.H.; Martinsen, A.; Andersen, J.R.; Baernthsen, H.; Bunch, E.; Lauesen, N. Incidence of nutritional risk and causes of inadequate nutritional care in hospitals. Clin. Nutr. 2002, 21, 461–468. [Google Scholar] [CrossRef]
- Moore, E.E.; Moore, H.B.; Kornblith, L.Z.; Neal, M.D.; Hoffman, M.; Mutch, N.J.; Schöchl, H.; Hunt, B.J.; Sauaia, A. Trauma-induced co-agulopathy. Nat. Rev. Dis. Prim. 2021, 7, 30, Erratum in Nat. Rev. Dis. Prim. 2022, 8, 25. [Google Scholar] [CrossRef]
- Beaudart, C.; Rabenda, V.; Simmons, M.; Geerinck, A.; Araujo De Carvalho, I.; Reginster, J.Y.; Amuthavalli Thiyagarajan, J.; Bruyère, O. Effects of Protein, Essential Amino Acids, B-Hydroxy B-Methylbutyrate, Creatine, Dehydroepiandrosterone and Fatty Acid Supplementation on Muscle Mass, Muscle Strength and Physical Performance in Older People Aged 60 Years and Over. A Systematic Review on the Literature. J. Nutr. Health Aging 2018, 22, 117–130. [Google Scholar]
- McClave, S.A.; Taylor, B.E.; Martindale, R.G.; Warren, M.M.; Johnson, D.R.; Braunschweig, C.; McCarthy, M.S.; Davanos, E.; Rice, T.W.; Cresci, G.A.; et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (ASPEN). JPEN J. Parenter. Enter. Nutr. 2016, 40, 159–211. [Google Scholar] [CrossRef]
- Wischmeyer, P.E. Tailoring nutrition therapy to illness and recovery. Crit. Care 2017, 21 (Suppl. S3), 316. [Google Scholar] [CrossRef] [PubMed]
- Arabi, Y.M.; Aldawood, A.S.; Haddad, S.H.; Al-Dorzi, H.M.; Tamim, H.M.; Jones, G.; Mehta, S.; McIntyre, L.; Solaiman, O.; Sakkijha, M.H.; et al. Permissive Underfeeding or Standard Enteral Feeding in Critically Ill Adults. N. Engl. J. Med. 2015, 372, 2398–2408. [Google Scholar] [CrossRef]
- Wischmeyer, P.E.; Hasselmann, M.; Kummerlen, C.; Kozar, R.; Kutsogiannis, D.J.; Karvellas, C.J.; Besecker, B.; Evans, D.K.; Preiser, J.C.; Gramlich, L.; et al. A randomized trial of supplemental parenteral nutrition in under-weight and overweight critically ill patients: The TOP-UP pilot trial. Crit. Care 2017, 21, 142. [Google Scholar] [CrossRef] [PubMed]
- Wahlen, B.M.; Mekkodathil, A.; Al-Thani, H.; El-Menyar, A. Impact of sarcopenia in trauma and surgical patient population: A literature review. Asian J. Surg. 2020, 43, 647–653. [Google Scholar] [CrossRef] [PubMed]
- Zumsteg, D.M.; Chu, C.E.; Midwinter, M.J. Radiographic assessment of sarcopenia in the trauma setting: A systematic review. Trauma Surg. Acute Care Open 2020, 5, e000414. [Google Scholar] [CrossRef]
Variables | Value | Variables | Value |
---|---|---|---|
Age (mean ± SD) | 32.8 ± 13.5 | Type of surgery | |
Gender | Abdominal | 43 (43.4%) | |
Male | 127 (92.0%) | Orthopedic | 34 (34.3%) |
Females | 11 (8.0%) | Neurosurgery | 8 (8.1%) |
Body mass index | 26.8 ± 5.5 | Others | 14 (14.1%) |
Body surface area | 1.86 ± 0.24 | Bowel resection | 40 (29.0%) |
Shock index at the scene | 0.83 ± 0.26 | Resection alone | 10 (25.0%) |
GCS at Scene | 15 (3–15) | Resection and anastomosis | 30 (75.0%) |
Shock index on admission | 1.02 ± 0.46 | Location of bowel resection | |
GCS on admission | 15 (3–15) | Small bowel | 19 (47.5%) |
Injury severity score | 24.6 ± 11.4 | Large bowel | 12 (30.0%) |
Abdomen AIS (n = 114) | 3.1 ± 1.0 | Both bowels | 8 (20.0%) |
Chest AIS (n = 88) | 2.9 ± 0.7 | Stomach | 1 (2.5%) |
Spine AIS (n = 58) | 2.3 ± 0.9 | Bowel leak | 4 (2.9%) |
Pelvis AIS (n = 52) | 2.3 ± 0.7 | Complications | |
Upper extremity AIS (n = 50) | 2.0 ± 0.2 | Pneumonia | 37 (26.8%) |
Lower extremity AIS (n = 43) | 2.6 ± 0.5 | Sepsis | 28 (20.3%) |
Head AIS (n = 35) | 3.9 ± 0.9 | Wound infection | 23 (16.7%) |
Spinal cord injury | 6 (4.3%) | ARDS | 18 (13.0%) |
Solid organ injury | 44 (31.9%) | Urinary tract infection | 12 (8.7%) |
Liver | 18 (40.9%) | Acute kidney injury | 11 (8.0%) |
Spleen | 13 (29.5%) | Deep vein thrombosis | 3 (2.2%) |
Multiple | 8 (18.2%) | Pulmonary Embolism | 2 (1.4%) |
Kidney | 3 (6.8%) | Hospital length of stay | 31.5 (8–166) |
Pancreatic injury | 2 (4.5%) | ICU length of stay | 16 (1–163) |
Intervention radiology | 32 (23.2%) | Ventilatory days | 12 (2–54) |
Surgical intervention | 99 (71.7%) | Mortality | 8 (5.8%) |
On Admission | after the First Week | p Value | |
---|---|---|---|
Oral * | 77 (55.8%) | 80 (58.4%) | 0.61 for all |
Enteral | 60 (43.5%) | 55 (40.1%) | |
- Nasogastric tube | 37 (60.7%) | 40 (72.7%) | 0.001 for all |
- Nasojejunal tube | 9 (14.8%) | 15 (27.3%) | |
- Orogastric tube | 14 (23.0%) | 0 (0.0%) | |
Parenteral | 1 (0.7%) | 2 (1.5%) | 1.00 |
Diet Order for oral intake | 1 (1–7) | - | - |
Strength Of formula for enteral feed ^ | |||
1 mL:1 kcal | 57 (95.0%) | - | - |
1 mL:1.8 kcal | 3 (5.0%) | - | - |
Infusion rate (mL/h) | 20 (10–80) | 70 (10–100) | 0.001 |
Type of formula used | 0.001 for all | ||
Standard | 17 (28.3%) ** | 21 (38.9%) *** | |
Elemental | 40 (66.7%) | 9 (16.7%) | |
Renal | 3 (5.0%) | 3 (5.6%) | |
High protein | - | 11 (20.4%) | |
Pulmonary | - | 2 (3.7%) | |
Wound healing | - | 3 (5.6%) | |
Diabetic | - | 4 (7.4%) | |
Hepatic formula | - | 1 (1.9%) | |
Amount of calorie (kg/BW) | 600 (240–2590) | 2000 (240–4000) | 0.001 |
Amount of protein (gm) (kg/BW) | 51 (8–143) | 113 (8–231) | 0.001 |
Tolerance of feed † | 126 (92.6%) | 130 (94.9%) | 0.44 |
Not Sufficient | 76 (55.9%) | 39 (28.7%) | 0.001 for all |
Sufficient | 60 (44.1%) | 97 (71.3%) |
on Admission | after One Week | p Value | |
---|---|---|---|
Laboratory findings | |||
WBC count | 17.3 ± 7.5 | 12.8 ± 5.1 | 0.001 |
Hemoglobin level | 12.5 ± 3.4 | 9.7 ± 1.5 | 0.001 |
Platelet count | 256 ± 85.4 | 275 ± 131 | 0.11 |
Serum creatinine | 92.6 ± 29.6 | 69.7 ± 60.1 | 0.001 |
Total protein | 52.6 ± 10.4 | 53.3 ± 10.3 | 0.05 |
Serum albumin | 31.3 ± 6.2 | 25.2 ± 5.8 | 0.001 |
International normalized ratio | 1.13 ± 0.16 | 1.07 ± 0.83 | 0.001 |
Partial thromboplastin time | 27.0 ± 7.7 | 28.2 ± 4.8 | 0.004 |
Serum lactate | 3.7 ± 2.6 | 1.48 ± 0.89 | 0.001 |
C-Reactive protein | 159.5 ± 125.2 | - | - |
Serum myoglobin | 855 (8–4882) | 124 (22–2284) | 0.001 |
Serum troponin | 62.5 (2–1443) | 29.5 (4–629) | 0.03 |
CT scan findings | |||
Total fat area | 239.3 ± 161.4 | 213.5 ± 150.6 | 0.001 |
Visceral fat area | 94.8 ± 74.3 | 81.6 ± 64.3 | 0.001 |
Subcutaneous fat area | 144.5 ± 109.2 | 131.9 ± 104.3 | 0.001 |
Total abdominal skeletal muscle area | 156.9 ± 39.4 | 149.9 ± 37.5 | 0.001 |
Total psoas muscle area | 27.1 ± 7.7 | 25.0 ± 7.3 | 0.001 |
Para-spinal muscle area | 64.2 ± 13.7 | 59.6 ± 13.4 | 0.001 |
Oral (n = 76) | Enteral (n = 60) | p-Value * | |||||
---|---|---|---|---|---|---|---|
on Admission | after One Week | Percentage Change | on Admission | after One Week | Percentage Change | ||
Total fat area | 222.4 (41–700.8) | 214.0 (17.8–585.5) | −5.65 (−58–0.4) | 217.6 (10.2–891.0) | 180.2 (7.4–772.0) | −7.2 (−90.8–0.8) | 0.47 |
Visceral fat area | 78.3 (8.1–263.8) | 67.3 (6.8–253.1) | −6.9 (−63.6–27.1) | 84.3 (4.6–382.2) | 74.0 (3.4–294.3) | −8.3 (−92.2–8.8) | 0.62 |
Subcutaneous fat area | 130.3 (26.8–539.7) | 123.4 (10.2–484) | −5.1 (−63–2.6) | 110.1 (5.6–586.0) | 104.5 (4.0–549.0) | −5.3 (−88.7–15.9) | 0.99 |
Total abdominal skeletal muscle area | 150.4 (14.2–222.5) | 140.9 (35–208.9) | −4.2 (−28.8–739) | 158.2 (94.5–356.4) | 146.3 (82.3–354.0) | −2.2 (−38.6–28.0) | 0.51 |
Total psoas muscle area | 27.9 (9.2–46.8) | 24.0 (12.4–54.3) | −5.9 (−31.3–17.0) | 26.1 (12.1–54.0) | 23.6 (12.3–44.9) | −8.9 (−98.3–13.0) | 0.02 |
Para-spinal muscle area | 63.3 (32.8–89.1) | 58.1 (28.2–89.9) | −6.3 (−31.3–17.0) | 63.8 (39.9–134.7) | 59.0 (29.1–129.7) | −4.7 (−32.5–11.5) | 0.82 |
GCS ≤ 8 (n = 32) | GCS > 8 (n = 102) | p-Value | |
---|---|---|---|
Total fat area | −5.8 (−50.2–1.1) | −6.2 (−90.8–0.4) | 0.63 |
Visceral fat area | −8.7 (−56.7–8.8) | −6.8 (−92.2–27.1) | 0.70 |
Subcutaneous fat area | −5.4 (−48.7–4.3) | −5.3 (−88.7–15.9) | 0.52 |
Total abdominal skeletal muscle area | −2.9 (−26.2–7.7) | −3.6 (−38.6–739.4) | 0.87 |
Total psoas muscle area | −11.0 (−59.5–4.1) | −6.2 (−98.3–107.6) | 0.05 |
Para-spinal muscle area | −5.4 (−23.3–11.1) | −5.8 (−32.5–17.0) | 0.74 |
SBP < 90 (n = 13) | SBP ≥ 90 (n = 118) | ||
Total fat area | −5.3 (−26.0–1.6) | −6.2 (−90.8–0.4) | 0.78 |
Visceral fat area | −4.9 (−50.6–5.2) | −7.2 (−92.2–27.1) | 0.36 |
Subcutaneous fat area | −6.0 (−29.4–2.4) | −4.9 (−88.7–15.9) | 0.40 |
Total abdominal skeletal muscle area | −1.3 (−8.0–5.9) | −3.5 (−38.6–739.4) | 0.05 |
Total psoas muscle area | −5.8 (−24.9–13.5) | −6.8 (−98.3–107.6) | 0.56 |
Para-spinal muscle area | −3.1 (−10.5–11.1) | −5.5 (−32.5–17.0) | 0.90 |
ISS ≤ 15 (n = 29) | ISS > 15 (n = 109) | ||
Total fat area | −7.9 (−57.5–0.1) | −6.2 (−90.8–0.4) | 0.43 |
Visceral fat area | −8.6 (−63.6–1.0) | −6.9 (−92.2–27.1) | 0.24 |
Subcutaneous fat area | −5.8 (−63.0–0.8) | −5.1 (−88.7–15.9) | 0.37 |
Total abdominal skeletal muscle area | −4.1 (−14.7–3.3) | −2.9 (−38.6–739.4) | 0.81 |
Total psoas muscle area | −5.6(−35.3–107.6) | −7.5 (−98.3–55.9) | 0.18 |
Para-spinal muscle area | −4.9 (−20.6–17.0) | −5.8 (−32.5–11.5) | 0.19 |
No-Laparotomy (n = 89) | Laparotomy (n = 49) | ||
Total fat area | −5.2 (−54.9–0.4) | −8.9 (−90.8–0.9) | 0.06 |
Visceral fat area | −7.1 (−90.3–27.1) | −7.0 (−92.2–2.5) | 0.40 |
Subcutaneous fat area | −4.8 (−48.7–15.9) | −6.0 (−88.7–3.6) | 0.11 |
Total abdominal skeletal muscle area | −2.9 (−28.8–739.4) | −3.5 (−38.6–28.0) | 0.51 |
Total psoas muscle area | −5.5 (−59.5–107.6) | −13.0 (−98.3–13.0) | 0.001 |
Para-spinal muscle area | −4.6 (−31.3–17.0) | −7.2 (−32.5–11.5) | 0.02 |
Variable | Oral (n = 76) | Enteral (n = 60) | p Value |
---|---|---|---|
WBC count | −30.4 (−100–780) | −36.3 (−100–908) | 0.58 |
Hemoglobin | −22.6 (−100–61.8) | −26.8 (−100–61.8) | 0.50 |
Platelet count | 15.3 (−100–319) | −16.0 (−100–324) | 0.006 |
Serum creatinine | −32.9 (−100–40) | −33.7 (−100–316.3) | 0.83 |
Total protein | 0.80 (−100–46) | 1.0 (−100–96) | 0.20 |
Serum albumin | −18.9 (−100–105.6) | −25.8 (−100–70.6) | 0.19 |
International normalized ratio | −9.1 (−100–900) | −16.7 (−100–11) | 0.01 |
Partial thromboplastin time | 12.7 (−100–64) | −4.8 (−100–104) | 0.03 |
Serum lactate | −76.8 (−100–153) | −84.9 (−100–143) | 0.71 |
Serum myoglobin | −100 (−100–823) | −100 (−100–35.9) | 0.47 |
Serum troponin | −100 (−100–613) | −100 (−100–476) | 0.70 |
GCS ≤ 8 (n = 32) | GCS > 8 (n = 102) | ||
WBC count | −35.9 (−100–908) | −33.7 (−100–780) | 0.75 |
Hemoglobin value | −20.4 (−100–61.8) | −23.8 (−100–31.9) | 0.18 |
Platelet count | −13.8 (−100–324) | 10.4 (−100–319) | 0.15 |
Serum creatinine | −33.7 (−100–101) | −33.2 (−100–316) | 0.97 |
Total protein | 6.3 (−100–96) | 0.0 (−100–59) | 0.12 |
Serum albumin | −21.3 (−100–106) | −21.1 (−100–105) | 0.90 |
International normalized ratio | −18.2 (−43–10) | −9.1 (−100–900) | 0.002 |
Partial thromboplastin time | −10.1 (−83–53) | 13.8 (−100–104) | 0.003 |
Serum lactate | −90.3 (−100–143) | −77.8 (−100–153) | 0.54 |
Serum myoglobin | −100 (−100–33.5) | −100 (−100–823) | 0.55 |
Serum troponin | −100 (−100–317) | −100 (−100–613) | 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Thani, H.; Wahlen, B.M.; El-Menyar, A.; Asim, M.; Nassar, L.R.; Ahmed, M.N.; Nabir, S.; Mollazehi, M.; Abdelrahman, H. Acute Changes in Body Muscle Mass and Fat Depletion in Hospitalized Young Trauma Patients: A Descriptive Retrospective Study. Diseases 2023, 11, 120. https://doi.org/10.3390/diseases11030120
Al-Thani H, Wahlen BM, El-Menyar A, Asim M, Nassar LR, Ahmed MN, Nabir S, Mollazehi M, Abdelrahman H. Acute Changes in Body Muscle Mass and Fat Depletion in Hospitalized Young Trauma Patients: A Descriptive Retrospective Study. Diseases. 2023; 11(3):120. https://doi.org/10.3390/diseases11030120
Chicago/Turabian StyleAl-Thani, Hassan, Bianca M. Wahlen, Ayman El-Menyar, Mohammad Asim, Lena Ribhi Nassar, Mohamed Nadeem Ahmed, Syed Nabir, Monira Mollazehi, and Husham Abdelrahman. 2023. "Acute Changes in Body Muscle Mass and Fat Depletion in Hospitalized Young Trauma Patients: A Descriptive Retrospective Study" Diseases 11, no. 3: 120. https://doi.org/10.3390/diseases11030120
APA StyleAl-Thani, H., Wahlen, B. M., El-Menyar, A., Asim, M., Nassar, L. R., Ahmed, M. N., Nabir, S., Mollazehi, M., & Abdelrahman, H. (2023). Acute Changes in Body Muscle Mass and Fat Depletion in Hospitalized Young Trauma Patients: A Descriptive Retrospective Study. Diseases, 11(3), 120. https://doi.org/10.3390/diseases11030120