Comparative Study on MNVT of OPV Type I and III Reference Products in Different Periods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Materials
2.3. Methods
3. Results
3.1. Statistics of Pathological Test Results of Type I MNVT
3.2. Statistics of Pathological Test Results of Type III MNVT
3.3. Comparison of Lesion Scores in Different Neurotropic Sites of Type I and Type III
3.4. C Value Statistic
3.5. MNVT Results of Test Vaccines in 2016–2022
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kidd, D.; Williams, A.J.; Howard, R.S. Poliomyelitis. Postgrad. Med. J. 1996, 72, 641–647. [Google Scholar] [PubMed]
- Cabrerizo, M. Grupo Para El Estudio de Las Infecciones Por Enterovirus Y Parechovirus GPEELIPEYP. Importancia de los enterovirus en neuropediatria: De los poliovirus a otros enterovirus [Importance of enteroviruses in neuropaediatrics: From polioviruses to other enteroviruses]. Rev. Neurol. 2017, 64, S35–S38. [Google Scholar] [PubMed]
- Howard, R.S. Poliomyelitis and the postpolio syndrome. BMJ 2005, 330, 1314–1318. [Google Scholar] [CrossRef]
- Tiffreau, V.; Rapin, A.; Serafi, R.; Percebois-Macadré, L.; Supper, C.; Jolly, D.; Boyer, F.-C. Post-polio syndrome and rehabilitation. Ann. Phys. Rehabil. Med. 2010, 53, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Gerloff, N.; Mandelbaum, M.; Pang, H.; Collins, N.; Brown, B.; Sun, H.; Harrington, C.; Hecker, J.; Agha, C.; Burns, C.C.; et al. Direct detection of polioviruses using a recombinant poliovirus receptor. PLoS ONE 2021, 16, e0259099. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, L.T.; Sherman, A.L. Medical Comorbidities and Complications Associated with Poliomyelitis and Its Sequelae. Phys. Med. Rehabil. Clin. N. Am. 2021, 32, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Previsani, N.; Tangermann, R.H.; Tallis, G.; Jafari, H.S. World Health Organization Guidelines for Containment of Poliovirus Following Type-Specific Polio Eradication—Worldwide, 2015. MMWR Morb. Mortal. Wkly. Rep. 2015, 64, 913–917. [Google Scholar] [CrossRef] [PubMed]
- Badizadegan, K.; Kalkowska, D.A.; Thompson, K.M. Polio by the Numbers—A Global Perspective. J. Infect. Dis. 2022, 226, 1309–1318. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.S.; Garon, J.; Seib, K.; Orenstein, W.A. Polio vaccination: Past, present and future. Future Microbiol. 2015, 10, 791–808. [Google Scholar] [CrossRef]
- Contreras, G.; Furesz, J.; Karpinski, K.; Grinwich, K.; Gardell, C. Experience in Canada with the new revised monkey neurovirulence test for oral poliovirus vaccine. J. Biol. Stand. 1988, 16, 195–205. [Google Scholar]
- Levenbook, I.S.; Pelleu, L.J.; Elisberg, B.L. The monkey safety test for neurovirulence of yellow fever vaccines: The utility of quantitative clinical evaluation and histological examination. J. Biol. Stand. 1987, 15, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.Y.; Wang, H.Y.; Ke, W.H.; Ma, J.M. Statistical analysis of the standard of reference viruses for monkey neurovirulence test in oral poliomyelitis vaccine(OPV). Prog. Microbiol. Immunol. 2005, 7–12. [Google Scholar] [CrossRef]
- World Health Assembly Global Eradication of Poliomyelitis by the Year 2000 (Resolution 41.28). 1988. Available online: http://www.who.int/csr/ihr/polioresolution4128en.pdf (accessed on 4 June 2019).
- Kew, O.; Morris-Glasgow, V.; Landaverde, M.; Burns, C.; Shaw, J.; Garib, Z.; André, J.; Blackman, E.; Freeman, C.J.; Jorba, J. Outbreak of Poliomyelitis in Hispaniola Associated with Circulating Type 1 Vaccine-Derived Poliovirus. Science 2002, 296, 356. [Google Scholar] [CrossRef] [PubMed]
- Ekaterina, K.; Majid, L.; Tatiana, Z.; Svetlana, P.; Elvira, R.; Elena, C.; Anatoly, G.; Olga, I.; Tatyana, E.; Galina, L. Pressure for Pattern-Specific Intertypic Recombination between Sabin Polioviruses: Evolutionary Implications. Viruses 2017, 9, 353. [Google Scholar]
- Burns, C.C.; Diop, O.M.; Sutter, R.W.; Kew, O.M. Vaccine-derived polioviruses. J. Infect. Dis. 2014, 210 (Suppl. 1), S283–S293. [Google Scholar] [CrossRef] [PubMed]
- Ciapponi, A.; Bardach, A.; Ares, L.R.; Glujovsky, D.; Cafferata, M.L.; Cesaroni, S.; Bhatti, A. Sequential inactivated (IPV) and live oral (OPV) poliovirus vaccines for preventing poliomyelitis. Cochrane Database Syst. Rev. 2019, 12, CD011260. [Google Scholar] [CrossRef]
- Falleiros-Arlant, L.H.; Ayala, S.E.G.; Domingues, C.; Brea, J.; Colsa-Ranero, A. Current status of poliomyelitis in Latin America. Estado Actual Polio. Latinoamérica. Rev. Chil. Infectol. 2020, 37, 701–709. [Google Scholar] [CrossRef]
- Shimizu, H. Poliovirus vaccine. Uirusu 2012, 62, 57–65. [Google Scholar] [CrossRef]
- May Fulton, C.; Bailey, W.J. Live Viral Vaccine Neurovirulence Screening: Current and Future Models. Vaccines 2021, 9, 710. [Google Scholar] [CrossRef]
- Rubin, S.A.; Afzal, M.A. Neurovirulence safety testing of mumps vaccines--historical perspective and current status. Vaccine 2011, 29, 2850–2855. [Google Scholar] [CrossRef]
- Sarcey, E.; Serres, A.; Tindy, F.; Chareyre, A.; Ng, S.; Nicolas, M.; Vetter, E.; Bonnevay, T.; Abachin, E.; Mallet, L. Quantifying low-frequency revertants in oral poliovirus vaccine using next generation sequencing. J. Virol. Methods 2017, 246, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Bidzhieva, B.; Laassri, M.; Chumakov, K. MAPREC assay for quantitation of mutants in a recombinant flavivirus vaccine strain using near-infrared fluorescent dyes. J. Virol. Methods 2011, 175, 14–19. [Google Scholar] [PubMed]
- Li, N.; Ding, L.; Ma, M.; Sun, Q.Y.; Wang, H.Y.; Li, T. Evaluation of the neurovirulence of type III Sabin strain poliovirus through MAPREC and MNVT. Chin. Med. Biotechnol. 2019, 6, 494–499. [Google Scholar]
- Ren, R.; Costantini, F.; Gorgacz, E.J.; Lee, J.J.; Racaniello, V.R. Transgenic mice expressing a human poliovirus receptor: A new model for poliomyelitis. Cell 1990, 63, 353–362. [Google Scholar] [PubMed]
- Abe, S.; Ota, Y.; Doi, Y.; Nomoto, A.; Nomura, T.; Chumakov, K.M.; Hashizume, S. Studies on neurovirulence in poliovirus-sensitive transgenic mice and cynomolgus monkeys for the different temperature-sensitive viruses derived from the Sabin type 3 virus. Virology 1995, 210, 160–166. [Google Scholar] [CrossRef]
- Koike, S.; Taya, C.; Aoki, J.; Matsuda, Y.; Ise, I.; Takeda, H.; Matsuzaki, T.; Amanuma, H.; Yonekawa, H.; Nomoto, A. Characterization of three different transgenic mouse lines that carry human poliovirus receptor gene—Influence of the transgene expression on pathogenesis. Arch. Virol. 1994, 139, 351–363. [Google Scholar] [CrossRef]
Stage | 1996–2002 | 2016–2022 | Increase | Decrease |
---|---|---|---|---|
Mean value | 0.605 | 0.383 | - | 0.222 |
Combined sample standard deviation (s) | 0.161 | 0.179 | 0.018 | - |
upper limit | 0.591 | 0.938 | 0.347 | - |
lower limit | 0.397 | 0.231 | - | 0.166 |
Stage | 1996–2002 | 2016–2022 | Increase | Decrease |
---|---|---|---|---|
Mean value | 0.732 | 0.538 | - | 0.194 |
Combined sample standard deviation (s) | 0.423 | 0.331 | - | 0.092 |
upper limit | 1.151 | 0.940 | - | 0.211 |
lower limit | 0.309 | 0.440 | 0.131 | - |
CNS | Type I | Type III | ||
---|---|---|---|---|
1996–2002 | 2016–2022 | 1996–2002 | 2016–2022 | |
Cervical | 0.276 | 0.118 | 0.532 | 0.449 |
Lumbar | 1.404 | 0.953 | 1.187 | 0.900 |
Brain | 0.127 | 0.070 | 0.473 | 0.229 |
Coefficient of variation (cv) | 0.346 | 0.437 | 0.851 | 0.543 |
Extramedullary diffusion index | 0.223 | 0.167 | 0.459 | 0.429 |
C Value | 1996–2002 | 2016–2021 | Increase | Decrease |
---|---|---|---|---|
Type I C1 | 0.224 | 0.160 | - | −0.064 |
Type I C2 | 0.253 | 0.180 | - | −0.073 |
Type I C3 | 0.110 | 0.081 | - | −0.029 |
Type III C1 | 0.282 | 0.243 | - | −0.039 |
Type III C2 | 0.318 | 0.274 | - | −0.044 |
Type III C3 | 0.139 | 0.123 | - | −0.016 |
NO. | Positive Monkeys | Meantest | Meanref | Meantest–Meanref | 2016–2022 | 1996–2002 (0.224) |
---|---|---|---|---|---|---|
1 | 13 | 0.461 | 0.381 | 0.08 | qualified | qualified |
2 | 13 | 0.279 | 0.306 | −0.027 | qualified | qualified |
3 | 14 | 0.449 | 0.428 | 0.021 | qualified | qualified |
4 | 14 | 0.407 | 0.284 | 0.123 | qualified | qualified |
5 | 14 | 0.273 | 0.270 | 0.003 | qualified | qualified |
6 | 14 | 0.266 | 0.263 | 0.003 | qualified | qualified |
7 | 14 | 0.360 | 0.446 | −0.086 | qualified | qualified |
8 | 14 | 0.476 | 0.355 | 0.121 | qualified | qualified |
9 | 14 | 0.268 | 0.314 | −0.046 | qualified | qualified |
10 | 14 | 0.449 | 0.486 | −0.037 | qualified | qualified |
11 | 13 | 0.286 | 0.327 | −0.041 | qualified | qualified |
12 | 13 | 0.417 | 0.453 | −0.036 | qualified | qualified |
13 | 14 | 0.381 | 0.381 | 0 | qualified | qualified |
14 | 14 | 0.491 | 0.436 | 0.055 | qualified | qualified |
15 | 14 | 0.444 | 0.428 | 0.016 | qualified | qualified |
16 | 12 | 0.398 | 0.43 | −0.032 | qualified | qualified |
17 | 13 | 0.552 | 0.48 | 0.072 | qualified | qualified |
18 | 13 | 0.399 | 0.285 | 0.114 | qualified | qualified |
19 | 14 | 0.429 | 0.529 | −0.1 | qualified | qualified |
NO. | Positive Monkeys | Meantest | Meanref | Meantest–Meanref | 2016–2022 | 1996–2002 (0.282) |
---|---|---|---|---|---|---|
1 | 22 | 0.712 | 0.676 | 0.036 | qualified | qualified |
2 | 21 | 0.531 | 0.481 | 0.05 | qualified | qualified |
3 | 21 | 0.544 | 0.575 | −0.031 | qualified | qualified |
4 | 20 | 0.382 | 0.500 | −0.118 | qualified | qualified |
5 | 20 | 0.468 | 0.630 | −0.162 | qualified | qualified |
6 | 22 | 0.536 | 0.482 | 0.054 | qualified | qualified |
7 | 21 | 0.542 | 0.525 | 0.017 | qualified | qualified |
8 | 22 | 0.582 | 0.413 | 0.169 | qualified | qualified |
9 | 21 | 0.478 | 0.558 | −0.08 | qualified | qualified |
10 | 22 | 0.647 | 0.472 | 0.175 | qualified | qualified |
11 | 21 | 0.619 | 0.590 | 0.029 | qualified | qualified |
12 | 21 | 0.524 | 0.553 | −0.029 | qualified | qualified |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Ren, R.; Ma, B.; Xie, J.; Ma, Y.; Luo, H.; Guo, Y.; Ding, L.; Zhang, L.; Zhang, M.; et al. Comparative Study on MNVT of OPV Type I and III Reference Products in Different Periods. Diseases 2023, 11, 28. https://doi.org/10.3390/diseases11010028
Wang X, Ren R, Ma B, Xie J, Ma Y, Luo H, Guo Y, Ding L, Zhang L, Zhang M, et al. Comparative Study on MNVT of OPV Type I and III Reference Products in Different Periods. Diseases. 2023; 11(1):28. https://doi.org/10.3390/diseases11010028
Chicago/Turabian StyleWang, Xiyan, Ruirui Ren, Bo Ma, Jing Xie, Yan Ma, Hong Luo, Yu Guo, Ling Ding, Liang Zhang, Mengyuan Zhang, and et al. 2023. "Comparative Study on MNVT of OPV Type I and III Reference Products in Different Periods" Diseases 11, no. 1: 28. https://doi.org/10.3390/diseases11010028
APA StyleWang, X., Ren, R., Ma, B., Xie, J., Ma, Y., Luo, H., Guo, Y., Ding, L., Zhang, L., Zhang, M., Wang, T., Shuang, Z., & Zhu, X. (2023). Comparative Study on MNVT of OPV Type I and III Reference Products in Different Periods. Diseases, 11(1), 28. https://doi.org/10.3390/diseases11010028