Evaluation of Xpert MTB/RIF Assay, MTB Culture and Line Probe Assay for the Detection of MDR Tuberculosis in AFB Smear Negative Specimens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Period, Design and Sample Size
2.2. Specimen and Data Collection
2.3. Sample Processing
2.4. Drug Susceptibility Testing (DST)
2.5. Quality Control
2.6. Data Analysis
3. Results
3.1. Distribution of Tuberculosis Patients with Various Attributes
3.2. Performance of Xpert MTB/RIF Assay, as Compared to Gold Standard Culture Method
3.3. Summary of Anti-Tubercular Drug Susceptibility Test
3.4. Performance of Xpert MTB/RIF Assay and LPA in Detecting Rifampicin Resistance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Global Tuberculosis Report 2020; World Health Organization (WHO): Geneva, Switzerland, 2020. [Google Scholar]
- National Tuberculosis Centre. Annual Report 2075/76 (2018/19); Government of Nepal, Ministry of Health & Population: Kathmandu, Nepal, 2020. [Google Scholar]
- Uplekar, M.; Weil, D.; Lonnroth, K.; Jaramillo, E.; Lienhardt, C.; Dias, H.M.; Falzon, D.; Floyd, K.; Gargioni, G.; Getahun, H.; et al. WHO’s new end TB strategy. Lancet 2015, 385, 1799–1801. [Google Scholar] [CrossRef]
- Gagneux, S. Ecology and evolution of Mycobacterium tuberculosis. Nat. Rev. Microbiol. 2018, 16, 202–213. [Google Scholar] [CrossRef]
- Shah, N.S.; Wright, A.; Bai, G.H.; Barrera, L.; Boulahbal, F.; Martín-Casabona, N.; Drobniewski, F.; Gilpin, C.; Havelková, M.; Lepe, R.; et al. Worldwide emergence of extensively drug-resistant tuberculosis. Emerg. Infect. Dis. 2007, 13, 380–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riaz, M.; Mahmood, Z.; Javed, M.T.; Javed, I.; Shahid, M.; Abbas, M.; Ehtisham-Ul-Hague, S. Drug resistant strains of Mycobacterium tuberculosis identified through PCR-RFLP from patients of Central Punjab, Pakistan. Int. J. Immunopathol. Pharmacol. 2016, 29, 443–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campos, L.C.; Rocha, M.V.; Willers, D.M.; Silva, D.R. Characteristics of patients with smear-negative pulmonary tuberculosis (TB) in a region with high TB and HIV prevalence. PLoS ONE 2016, 11, e0147933. [Google Scholar] [CrossRef] [Green Version]
- Rasool, G.; Khan, A.M.; Mohy-Ud-Din, R.; Riaz, M. Detection of Mycobacterium tuberculosis in AFB smear-negative sputum specimens through MTB culture and Xpert® MTB/RIF assay. Int. J. Immunopathol. Pharmacol. 2019, 33, 2058738419827174. [Google Scholar] [CrossRef] [Green Version]
- Venkataswamy, M.; Rafi, W.; Nagarathna, S.; Ravi, V.; Chandramuki, A. Comparative evaluation of BACTEC 460TB system and Lowenstein-Jensen medium for the isolation of M. tuberculosis from cerebrospinal fluid samples of tuberculous meningitis patients. Indian J. Med. Microbiol. 2007, 25, 236–240. [Google Scholar] [CrossRef]
- Mccarter, Y.S.; Robinson, A. Quality evaluation of sputum specimens for mycobacterial culture. Am. J. Clin. Pathol. 1996, 105, 769–773. [Google Scholar] [CrossRef] [Green Version]
- Morcillo, N.; Imperiale, B.; Palomino, J.C. New simple decontamination method improves microscopic detection and culture of mycobacteria in clinical practice. Infect. Drug Resist. 2008, 1, 21. [Google Scholar] [CrossRef] [Green Version]
- WHO. Mycobacteriology Laboratory Manual; World Health Organization (WHO): Geneva, Switzerland, 2013. [Google Scholar]
- WHO. Automated Real-Time Nucleic Acid Amplification Technology for Rapid and Simultaneous Detection of Tuberculosis and Rifampicin Resistance: Xpert MTB/RIF Assay for the Diagnosis of Pulmonary and Extrapulmonary TB in Adults and Children: Policy Update. Geneva PP—Geneva: World Health Organization. 2013. Available online: https://apps.who.int/iris/handle/10665/112472 (accessed on 20 March 2020).
- Tadele, A.; Beyene, D.; Hussein, J.; Gemechu, T.; Birhanu, A.; Mustafa, T.; Tsegaye, A.; Aseffa, A.; Sviland, L. Immunocytochemical detection of Mycobacterium tuberculosis complex specific antigen, MPT64, improves diagnosis of tuberculous lymphadenitis and tuberculous pleuritis. BMC Infect. Dis. 2014, 14, 585. [Google Scholar] [CrossRef] [PubMed]
- Heifets, L. Conventional methods for antimicrobial susceptibility testing of Mycobacterium tuberculosis. In Multidrug-Resistant Tuberculosis; Springer: Berlin/Heidelberg, Germany, 2000; Volume 2000. [Google Scholar]
- Albert, H.; Bwanga, F.; Mukkada, S.; Nyesiga, B.; Ademun, J.P.; Lukyamuzi, G.; Haile, M.; Hoffner, S.; Joloba, M.; O’Brien, R. Rapid screening of MDR-TB using molecular Line Probe Assay is feasible in Uganda. BMC Infect. Dis. 2010, 10, 41. [Google Scholar] [CrossRef] [Green Version]
- Perez-Risco, D.; Rodriguez-Temporal, D.; Valledor-Sanchez, I.; Alcaidea, F. Evaluation of the Xpert MTB/RIF Ultra Assay for Direct Detection of Mycobacterium tuberculosis complex in Smear-Negative Extrapulmonary Samples. J. Clin. Microbiol. 2018, 56, e00659-18. [Google Scholar] [CrossRef] [Green Version]
- Moure, R.; Muñoz, L.; Torres, M.; Santin, M.; Martín, R.; Alcaide, F. Rapid detection of Mycobacterium tuberculosis complex and rifampin resistance in smear-negative clinical samples by use of an integrated real-time PCR method. J. Clin. Microbiol. 2011, 49, 1137–1139. [Google Scholar] [CrossRef] [Green Version]
- Kaufmann, S.H.E. How can immunology contribute to the control of tuberculosis? Nat. Rev. Immunol. 2001, 1, 20–30. [Google Scholar] [CrossRef]
- Hudelson, P. Gender differentials in tuberculosis: The role of socio-economic and cultural factors. Tuberc. Lung Dis. 1996, 77, 391–400. [Google Scholar] [CrossRef]
- Gupta, S.N.; Gupta, N.; Gupta, S. Surveillance data analysis of Revised National Tuberculosis Control Program of Kangra, Himachal Pradesh. J. Fam. Med. Prim. Care. 2013, 2, 250. [Google Scholar] [CrossRef]
- Ghimire, P.; Rijal, K.R.; Rijal, B.; Bam, D.S. Drug resistant pulmonary tuberculosis among patients visiting National Tuberculosis Center, Kathmandu. J. Nepal Health Res. Counc. 2005, 3, 25–28. [Google Scholar]
- Afshar, B.; Carless, J.; Roche, A.; Balasegaram, S.; Anderson, C. Surveillance of tuberculosis (TB) cases attributable to relapse or reinfection in London, 2002–2015. PLoS ONE 2019, 14, e0211972. [Google Scholar] [CrossRef] [Green Version]
- Narasimhan, P.; Wood, J.; Macintyre, C.R.; Mathai, D. Risk Factors for Tuberculosis. Pulm. Med. 2013, 2013, 11. [Google Scholar] [CrossRef] [PubMed]
- Bates, M.N.; Khalakdina, A.; Pai, M.; Chang, L.; Lessa, F.; Smith, K.R. Risk of tuberculosis from exposure to tobacco smoke: A systematic review and meta-analysis. Arch. Intern. Med. 2007, 167, 335–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maurya, V.; Vijayan, V.K.; Shah, A. Smoking and tuberculosis: An association overlooked. Int. J. Tuberc. Lung Dis. 2002, 6, 942–951. [Google Scholar]
- Geleta, D.A.; Megerssa, Y.C.; Gudeta, A.N.; Akalu, G.T.; Debele, M.T.; Tulu, K.D. Xpert MTB/RIF assay for diagnosis of pulmonary tuberculosis in sputum specimens in remote health care facility. BMC Microbiol. 2015, 15, 220. [Google Scholar] [CrossRef]
- Rasheed, W.; Rao, N.A.; Adel, H.; Baig, M.S.; Adil, S.O. Diagnostic Accuracy of Xpert MTB/RIF in Sputum Smear-Negative Pulmonary Tuberculosis. Cureus 2019, 11, e5391. [Google Scholar] [CrossRef] [Green Version]
- Pandey, P.; Pant, N.D.; Rijal, K.R.; Shrestha, B.; Kattel, S.; Banjara, M.R.; Maharjan, B.; Rajendra, K.C. Diagnostic Accuracy of Xpert MTB/RIF Assay in Comparison to Conventional Drug Susceptibility Testing Method for the Diagnosis of Multidrug-Resistant Tuberculosis. PLoS ONE 2017, 12, e0169798. [Google Scholar] [CrossRef]
- Saeed, M.; Iram, S.; Hussain, S.; Ahmed, A.; Akbar, M.; Aslam, M. Xpert: A new tool for the rapid detection of rifampicin resistance in Mycobacterium tuberculosis. J. Pak. Med. Assoc. 2017, 67, 270–274. [Google Scholar]
- Sharma, S.K.; Kohli, M.; Yadav, R.N.; Chaubey, J.; Bhasin, D.; Sreenivas, V.; Sharma, R.; Singh, B.K. Evaluating the Diagnostic Accuracy of Xpert MTB/RIF Assay in Pulmonary Tuberculosis. PLoS ONE 2015, 10, e0141011. [Google Scholar] [CrossRef]
- Meaza, A.; Kebede, A.; Yaregal, Z.; Dagne, Z.; Moga, S.; Yenew, B.; Diriba, G.; Molalign, H.; Tadesse, M.; Adisse, D.; et al. Evaluation of genotype MTBDR plus VER 2.0 line probe assay for the detection of MDR-TB in smear positive and negative sputum samples. BMC Infect. Dis. 2017, 17, 280. [Google Scholar] [CrossRef] [Green Version]
- Aricha, S.A.; Kingwara, L.; Mwirigi, N.W.; Chaba, L.; Kiptai, T.; Wahogo, J.; Otwabe, J.S.; Onyango, P.O.; Karanja, M.; Ayieko, C.; et al. Comparison of Xpert and line probe assay for detection of Mycobacterium tuberculosis and rifampicin-mono resistance at the National Tuberculosis Reference Laboratory, Kenya. BMC Infect. Dis. 2019, 19, 852. [Google Scholar] [CrossRef]
Results | Methods | ||
---|---|---|---|
Fluorescence Microscopy | Xpert MTB/RIF Assay | MTB Culture on LJ Medium | |
Positive | 0 | 48 (21.62%) | 47 (21.17%) |
Negative | 222 (100%) | 174 (78.38%) | 166 (74.78%) |
Contamination | 0 | 0 | 9 (4.05%) |
Attributes | Sample Size | Presence of M. tuberculosis Detected by | |||
---|---|---|---|---|---|
Xpert MTB/RIF Assay n (%) | p-Value | Culture n (%) | p-Value | ||
Gender | |||||
Male | 153 | 35 (22.88) | 0.5 | 31 (20.26) | 0.62 |
Female | 69 | 13 (18.84) | 16 (23.19) | ||
Age group | |||||
≤14 | 4 | 1 (25.00) | 0.027 * | 1 (25.00) | 0.037 * |
15–54 | 130 | 36 (27.69) | 35 (26.92) | ||
≥55 | 88 | 11 (12.50) | 11 (12.50) | ||
Previous TB history | |||||
Yes | 28 | 17 (60.71) | 0.0001 * | 18 (64.29) | 0.0001 * |
No | 194 | 31 (15.98) | 29 (14.95) | ||
Smoking | |||||
Yes | 49 | 11 (22.45) | 0.26 | 9 (18.37) | 0.718 |
No | 173 | 27 (15.61) | 28 (16.18) | ||
Alcohol consumption | |||||
Yes | 42 | 25 (59.52) | 0.0001 * | 24 (57.14) | 0.0001 * |
No | 180 | 23 (12.78) | 23 (12.78) |
Method | Culture | p-Value | Sensitivity | Specificity | PPV | NPV | ||
---|---|---|---|---|---|---|---|---|
Xpert MTB/RIF | Positive | Negative | Total | |||||
Positive | 34 (70.8) | 14 (29.2) | 48 | 0.01 | 73% | 92% | 71% | 93% |
Negative | 13 (7.5) | 161 (92.5) | 174 |
Test Performed | Sensitivity % (95% CI) | Specificity % (95% CI) | PPV % (95% CI) | NPV % (95% CI) | Accuracy % |
---|---|---|---|---|---|
Xpert MTB/RIF assay | 75 (42–94) | 94.29 (80–99) | 81.82(52–94) | 91.67 (80–96) | 89 |
LPA | 91.67 (62–99) | 97.14 (85–99) | 91.67 (61–98) | 97.14 (83–99) | 95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lama, C.; Adhikari, S.; Sapkota, S.; Regmi, R.S.; Ghimire, G.R.; Banjara, M.R.; Ghimire, P.; Rijal, K.R. Evaluation of Xpert MTB/RIF Assay, MTB Culture and Line Probe Assay for the Detection of MDR Tuberculosis in AFB Smear Negative Specimens. Diseases 2022, 10, 82. https://doi.org/10.3390/diseases10040082
Lama C, Adhikari S, Sapkota S, Regmi RS, Ghimire GR, Banjara MR, Ghimire P, Rijal KR. Evaluation of Xpert MTB/RIF Assay, MTB Culture and Line Probe Assay for the Detection of MDR Tuberculosis in AFB Smear Negative Specimens. Diseases. 2022; 10(4):82. https://doi.org/10.3390/diseases10040082
Chicago/Turabian StyleLama, Chandri, Sanjib Adhikari, Sanjeep Sapkota, Ramesh Sharma Regmi, Gokarna Raj Ghimire, Megha Raj Banjara, Prakash Ghimire, and Komal Raj Rijal. 2022. "Evaluation of Xpert MTB/RIF Assay, MTB Culture and Line Probe Assay for the Detection of MDR Tuberculosis in AFB Smear Negative Specimens" Diseases 10, no. 4: 82. https://doi.org/10.3390/diseases10040082
APA StyleLama, C., Adhikari, S., Sapkota, S., Regmi, R. S., Ghimire, G. R., Banjara, M. R., Ghimire, P., & Rijal, K. R. (2022). Evaluation of Xpert MTB/RIF Assay, MTB Culture and Line Probe Assay for the Detection of MDR Tuberculosis in AFB Smear Negative Specimens. Diseases, 10(4), 82. https://doi.org/10.3390/diseases10040082