Bacterial Contamination of Surgical Instruments Used at the Surgery Department of a Major Teaching Hospital in a Resource-Limited Country: An Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subsection Study Site, Instrument Selection, and Sampling
2.2. Sample Processing and Bacteria Culture
2.3. Identification and Antimicrobial Susceptibility Testing of Bacteria Culture
2.4. Statistical Analysis
2.5. Ethical Clearance
3. Results
4. Discussion
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cloutman-Green, E.; Canales, M.; Zhou, Q.; Ciric, L.; Hartley, J.C.; McDonnell, G. Biochemical and microbial contamination of surgical devices: A quantitative analysis. Am. J. Infect. Control 2015, 43, 659–661. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, G.; Sheard, D. A Practical Guide to Decontamination in Healthcare; Wiley-Blackwell: Oxford, UK, 2012. [Google Scholar]
- Bommarito, M.; Witcher, K.; Thornhill, G. The Utility of an ATP System for Monitoring the Cleanliness of Surgical Instruments. Available online: https://multimedia.3m.com/mws/media/720676O/utility-of-an-atp-system-for-monitoring-surgical-instruments.pdf (accessed on 28 January 2022).
- Dancer, S.J.; Stewart, M.; Coulombe, C.; Gregori, A.; Virdi, M. Surgical site infections linked to contaminated surgical instruments. J. Hosp. Infect. 2012, 81, 8. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Kobayashi, H.; Uetera, Y.; Yasuhara, H.; Kajiura, T.; Okubo, T. Microbial contamination of surgical instruments used for laparotomy. Am. J. Infect. Control 2014, 42, 43–47. [Google Scholar] [CrossRef] [PubMed]
- de Lissovoy, G.; Fraeman, K.; Hutchins, V.; Murphy, D.; Song, D.; Vaughn, B.B. Surgical site infection: Incidence and impact on hospital utilization and treatment costs. Am. J. Infect. Control 2009, 37, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Harder, E.E.; Gaies, M.G.; Yu, S.; Donohue, J.E.; Hanauer, D.A.; Goldberg, C.S.; Hirsch, J.C. Risk factors for surgical site infection in pediatric cardiac surgery patients undergoing delayed sternal closure. J. Thorac. Cardiovasc. Surg. 2013, 146, 326–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bediako-Bowan, A.; Owusu, E.; Debrah, S.; Kjerulf, A.; Newman, M.J.; Kurtzhals, J.A.L.; Mølbak, K. Surveillance of surgical site infection in a teaching hospital in Ghana: A prospective cohort study. J. Hosp. Infect. 2020, 104, 321–327. [Google Scholar] [CrossRef]
- Mangram, A.J.; Horan, T.C.; Pearson, M.L.; Silver, L.C.; Jarvis, W.R.; The Hospital Infection Control Practices Advisory Committee. Guideline for prevention of surgical site infection, 1999. Am. J. Infect. Control 1999, 27, 97–134. [Google Scholar] [CrossRef]
- Rutala, W.A.; Weber, D.J. Guideline for Disinfection and Sterilization in Healthcare Facilities; Department of Health and Human Services: Washington, DC, USA, 2008; pp. 1–158. [Google Scholar]
- Rutala, W.A.; Weber, D.J. How to assess risk of disease transmission to patients when there is a failure to follow recommended disinfection and sterilization guidelines. Infect. Control. Hosp. Epidemiol. 2007, 28, 146–155. [Google Scholar] [CrossRef]
- Chu, N.S.; Chan-Myers, H.; Ghazanfari, N.; Antonoplos, P. Levels of naturally occurring microorganisms on surgical instruments after clinical use and after washing. Am. J. Infect. Control 1999, 27, 315–319. [Google Scholar] [CrossRef]
- Razzaq, T.-T.-A.; Shnan, A.; Ali, A.M. Sterilization of Surgical Tools: Removing Bacterial Endospores with a Combination of Povidone-iodine, Chlorhexidine Gluconate, Ethanol, and Methanol. J. Pure Appl. Microbiol. 2019, 13, 2499–2506. [Google Scholar] [CrossRef]
- Owusu, E.; Newman, M.J.; Akumwena, A.; Bannerman, E.; Pluschke, G. Evaluating decontamination protocols for the isolation of Mycobacterium ulcerans from swabs. BMC Microbiol. 2017, 17, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leung, J.W. Reprocessing of flexible endoscopes. J. Gastroenterol. Hepatol. 2000, 15, S3. [Google Scholar] [CrossRef] [PubMed]
- Norihiro, K.; Junko, N.; Toshiko, O.; Shinobu, O. Intestinal bacterial contamination of surgical instruments used for wound closure during intestinal surgery. J. Perioper. Nurs. 2018, 31, 13–20. [Google Scholar]
- Labi, A.-K.; Obeng-Nkrumah, N.; Owusu, E.; Bjerrum, S.; Bediako-Bowan, A.; Sunkwa-Mills, G.; Akufo, C.; Fenny, A.P.; Opintan, J.A.; Enweronu-Laryea, C.; et al. Multi-centre point prevalence survey of hospital-acquired infections in Ghana. J. Hosp. Infect. 2018, 101, 60–68. [Google Scholar] [CrossRef]
- Bediako-Bowan, A.A.A.; Mølbak, K.; Kurtzhals, J.A.L.; Owusu, E.; Debrah, S.; Newman, M.J. Risk factors for surgical site infections in abdominal surgeries in Ghana: Emphasis on the impact of operating rooms door openings. Epidemiol. Infect. 2020, 148, 1–5. [Google Scholar] [CrossRef]
- Owusu, E.; Ahorlu, M.M.; Afutu, E.; Akumwena, A.; Asare, G.A. Antimicrobial Activity of Selected Medicinal Plants from a Sub-Saharan African Country against Bacterial Pathogens from Post-Operative Wound Infections. Med. Sci. 2021, 9, 23. [Google Scholar] [CrossRef]
- Flournoy, D.J.; Wongpradit, S.; Silberg, S.L. Facilitating Identification of Lactose-Fermenting Enterobacteriaceae on MacConkey Agar. Proc. Okla. Acad. Sci. 1990, 70, 5–8. [Google Scholar]
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef]
- National Committee for Clinical Laboratory Standards. Performance Standards for Antimicrobial Susceptibility Testing. Fifteenth Informational Supplement. 2005. NCCLS Document M100-S15. 2005. Available online: http://www.clsi.org/ (accessed on 6 November 2012).
- Todar, K. Todar’s Online Textbook of Bacteriology: Streptococcus Pneumonia. 2004. Available online: http://www.textbookofbacteriology.net/S.pneumoniae.html (accessed on 8 September 2013).
- Ryan, K.J.; Ray, C.G. (Eds.) Sherris Medical Microbiology, 4th ed.; McGraw Hill: New York, NY, USA, 2004. [Google Scholar]
- de Melo Costa, D.; de Oliveira Lopes, L.K.; Tipple, A.F.V.; Castillo, R.B. Sterilizing Service Unit packing area: To glove, or regular hand hygiene, that is the question. J. Hosp. Infect. 2017, 97, 348–352. [Google Scholar]
- Fujita, T.; Nishiura, H. Environmental Drivers of Bacillus-Positive Blood Cultures in a Cancer Hospital, Sapporo, Japan. Int. J. Environ. Res. Public Health 2018, 15, 2201. [Google Scholar] [CrossRef] [Green Version]
- Bryce, E.A.; Smith, J.A.; Tweeddale, M.; Andruschak, B.J.; Maxwell, M.R. Dissemination of Bacillus cereus in an intensive care unit. Infect. Control Hosp. Epidemiol. 1993, 14, 459–462. [Google Scholar] [CrossRef] [PubMed]
- Barrie, D.; Wilson, J.A.; Hoffman, P.N.; Kramer, J.M. Bacillus cereus meningitis in two neurosurgical patients: An investigation into the source of the organism. J. Infect. 1992, 25, 291–297. [Google Scholar] [CrossRef]
- Loeb, M.; Wilcox, L.; Thornley, D.; Gun-Munro, J.; Richardson, H. Bacillus species pseudobacteremia following hospital construction. Can. J. Infect. Control 1995, 10, 37–40. [Google Scholar] [PubMed]
- Boix-Palop, L.; Nicolás, C.; Xercavins, M.; Riera, M.; Prim, N.; Freixas, N.; Pérez, J.; Calbo, E. Bacillus species pseudo-outbreak: Construction works and collateral damage. J. Hosp. Infect. 2017, 95, 118–122. [Google Scholar] [CrossRef] [PubMed]
- Mbhele, Z.N.; Shobo, C.O.; Amoako, D.G.; Zishiri, O.T.; Bester, L.D. Occurrence, Antibiotic Resistance, Virulence Factors, and Genetic Diversity of Bacillus spp. from Public Hospital Environments in South Africa. Microb. Drug Resist. 2021, 27, 1692–1704. [Google Scholar] [CrossRef]
- Shahid, M. Citrobacter spp. simultaneously harboring blaCTX-M, blaTEM, blaSHV, blaampC, and insertion sequences IS26 and orf513: An evolutionary phenomenon of recent concern for antibiotic resistance. J. Clin. Microbiol. 2010, 48, 1833–1838. [Google Scholar] [CrossRef] [Green Version]
- Whalen, J.G.; Mully, T.W.; English, J.C. 3rd Spontaneous Citrobacter freundii infection in an immunocompetent patient. Arch. Dermatol. 2007, 143, 124–125. [Google Scholar] [CrossRef]
- Gupta, R.; Rauf, S.J.; Singh, S.; Smith, J.; Agraharkar, M.L. Sepsis in a renal transplant recipient due to Citrobacter braakii. South Med. J. 2003, 96, 796–798. [Google Scholar] [CrossRef]
- Pepperell, C.; Kus, J.V.; Gardam, M.A.; Humar, A.; Burrows, L.L. Low-virulence Citrobacter species encode resistance to multiple antimicrobials. Antimicrob. Agents Chemother. 2002, 46, 3555–3560. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Cruz, C.P.; Arguilar, M.J.N.; Arroyo-Helguera, O.E. Fungal and bacterial contamination on indoor surfaces of a hospital in Mexico. Jundishapur J. Microbiol. 2012, 5, 460–464. [Google Scholar]
- Darouiche, R.O. Device-associated infections: A macroproblem that starts with microadherence. Clin. Infect. Dis. 2001, 33, 1567–1572. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; He, L.; Asiamah, T.K.; Otto, M. Colonization of medical devices by staphylococci. Environ. Microbiol. 2018, 20, 3141–3153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omololu, A.S.J. Staphylococcus aureus Surface Colonization of Medical Equipment and Environment, Implication in Hospital-Community Epidemiology. J. Hosp. Med. Manag. 2017, 3, 1. [Google Scholar]
- Bilung, L.M.; Tahar, A.S.; Kira, R.; Rozali, A.A.M.; Apun, K. High Occurrence of Staphylococcus aureus Isolated from Fitness Equipment from Selected Gymnasiums. J. Environ. Public Health 2018, 2018, 4592830. [Google Scholar] [CrossRef] [Green Version]
- Bediako-Bowan, A.; Owusu, E.; Labi, A.K.; Obeng-Nkrumah, N.; Sunkwa-Mills, G.; Bjerrum, S.; Opintan, J.A.; Bannerman, C.; Mølbak, K.; Kurtzhals, J.; et al. Antibiotic use in surgical units of selected hospitals in Ghana: A multi-centre point prevalence survey. BMC Public Health 2019, 19, 797. [Google Scholar] [CrossRef] [PubMed]
- Rutala, W.A.; Weber, D.J. Disinfection and Sterilization in Health Care Facilities: An Overview and Current Issues. Infect. Dis. Clin. N. Am. 2016, 30, 609–637. [Google Scholar] [CrossRef] [PubMed]
- Francolini, I.; Hall-Stoodley, L.; Stoodley, P. 2.2.8—Biofilms, Biomaterials, and Device-Related Infections. In Biomaterials Science, 4th ed.; Wagner, W.R., Sakiyama-Elbert, S.E., Zhang, G., Yaszemski, M.J., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 823–840. ISBN 9780128161371. [Google Scholar] [CrossRef]
- Alemu, A.; Misganaw, D.; Wondimeneh, Y. Bacterial profile and their antimicrobial susceptibility patterns of computer keyboards and mice at Gondar University Hospital, Northwest Ethiopia. Biomed. Biotechnol. 2015, 3, 1–7. [Google Scholar]
- Aminu, M.; Usman-Sani, H.; Usman, M.A. Characterization and determination of antibiotic susceptibility pattern of bacteria isolated from some fomites in a teaching hospital in northern Nigeria. Afr. J. Microbiol. Res. 2014, 8, 814–818. [Google Scholar] [CrossRef] [Green Version]
- Gurjeet, S.; Urhekar, A.D.; Anahita, V.H.; Neha, S.; Bhaskar, D. Bacterial contamination of stethoscopes used by health care workers in a Tertiary Care Hospital in Navimumbai. Int. J. Pharm. Biol. Sci. 2013, 3, 186–193. [Google Scholar]
- Teklu, S.; Getenet, B.; Tesfaye, K.; Tsegaye, S. Bacterial contamination, bacterial profile and antimicrobial susceptibility pattern of isolates from stethoscopes at Jimma University Specialized Hospital. Ann. Clin. Microbiol. Antimicrob. 2013, 12, 39. [Google Scholar]
- Darge, A.; Kahsay, A.G.; Hailekiros, H.; Niguse, S.; Abdulkader, M. Bacterial contamination and antimicrobial susceptibility patterns of intensive care units medical equipment and inanimate surfaces at Ayder Comprehensive Specialized Hospital, Mekelle, Northern Ethiopia. BMC Res. Notes 2019, 12, 621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newman, M.J.; Frimpong, E.; Donkor, E.S.; Opintan, J.A.; Asamoah-Adu, A. Resistance to antimicrobial drugs in Ghana. Infect. Drug Resist. 2011, 4, 215–220. [Google Scholar] [PubMed] [Green Version]
- Amponsah, O.K.O.; Nagaraja, S.B.; Ayisi-Boateng, N.K.; Nair, D.; Muradyan, K.; Asense, P.S.; Wusu-Ansah, O.K.; Terry, R.F.; Khogali, M.; Buabeng, K.O. High Levels of Outpatient Antibiotic Prescription at a District Hospital in Ghana: Results of a Cross Sectional Study. Int. J. Environ. Res. Public Health 2022, 19, 10286. [Google Scholar] [CrossRef] [PubMed]
- Jimah, T.; Fenny, A.P.; Ogunseitan, O.A. Antibiotics stewardship in Ghana: A cross-sectional study of public knowledge, attitudes, and practices among communities. One Health Outlook 2020, 2, 12. [Google Scholar] [CrossRef] [PubMed]
Instrument Name | No. | Bacteria Isolate | N (%) |
---|---|---|---|
Galipot | 6 | Citrobacter freundii | 2 (10.5) |
Dissecting forceps | 5 | NBG | 0 (0.0) |
Kocher forceps | 6 | Bacillus cereus | 3 (15.7) |
Rampley’s sponge holding forceps | 7 | NBG | 0 (0.0) |
Curved mosquito artery forceps | 7 | NBG | 0 (0.0) |
Kerrison forceps | 8 | Staphylococcus aureus | 5 (26.3) |
Metzenbaum scissors | 5 | NBG | 0 (0.0) |
Mayo’s scissors | 8 | Bacillus cereus | 2 (10.5) |
Langenberg retractor | 7 | NBG | 0 (0.0) |
Deaver’s retractor | 6 | Citrobacter freundii | 4 (21.1) |
Bone nibbler | 5 | NBG | 0 (0.0) |
Shunt passer | 8 | NBG | 0 (0.0) |
Stereotactic system | 6 | NBG | 0 (0.0) |
Shoulder arthroscope | 9 | Bacillus cereus | 3 (15.7) |
Units | Endoscope Part | No. | Bacteria Isolate | N (%) | |
---|---|---|---|---|---|
Gastrointestinal (GI) endoscopy | Endoscope insertion tube | 7 | Bacillus cereus Citrobacter spp. | 2 (9.5) 3 (14.3) | |
Used for the upper gastrointestinal tract | Endoscope distal tip | 8 | Bacillus cereus Citrobacter spp. | 2 (9.5) 4 (19.0) | |
Endoscope suction valve | 5 | NBG | 0 (0.0) | ||
Used for the lower gastrointestinal tract | Endoscope insertion tube | 10 | Citrobacter spp. Bacillus cereus | 4 (19.0) 2 (9.5) | |
Endoscope distal tip | 12 | Citrobacter freundii Citrobacter spp. | 4 (19.0) 4 (19.0) | ||
Urology endoscopy unit | Dilator (size 18–22) Dilator (size 24) | 6 8 | Bacillus cereus Staphylococcus hominis Bacillus cereus | 2 (11.7) 1 (5.9) 3 (17.6) | |
Dilator (size 20–24) | 5 | Bacillus cereus | 2 (11.7) | ||
Dilator (size 16–20) | 5 | NBG | 0 (0.0) | ||
Forceps | 6 | NBG | 0 (0.0) | ||
Sponge holding forceps | 5 | NBG | 0 (0.0) | ||
Urethrotome | 7 | Bacillus cereus | 3 (17.6) | ||
Cystoscope bridge | 5 | Bacillus cereus | 2 (11.7) | ||
Cystoscope Obturator | 8 | NBG | 0 (0.0) | ||
Urethrotome | 6 | NBG | 0 (0.0) | ||
30° Rigid Cystoscope | 9 | Bacillus cereus | 3 (17.6) | ||
0° Rigid Cystoscope | 7 | Bacillus cereus | 1 (5.9) |
Antibiotics | Pattern (S or R) | Citrobacter spp. (n = 15) | Citrobacter freundii (n = 10) | Staphylococcus aureus (n = 5) | Staphylococcus hominis (n = 1) |
---|---|---|---|---|---|
Gentamicin | S | 13 (86.7) | 8 (80) | 4 (80) | 1 (100) |
R | 2 (13.3) | 2 (20) | 1 (20) | 0 (0) | |
Ciprofloxacin | S | 12 (80.0) | 9 (90) | 5 (100) | 1 (100) |
R | 3 (20.0) | 1 (10) | 0 (0) | 0 (0) | |
Levofloxacin | S | 13 (86.7) | 8 (80) | 4 (80) | 1 (100) |
R | 2 (13.3) | 2 (20) | 1 (20) | 0 (0) | |
Ampicillin | S | 1 (6.7) | 2 (20) | 1 (20) | 0 (0) |
R | 14 (93.3) | 8 (80) | 4 (80) | 1 (100) | |
Cefuroxime | S | 3 (20.0) | 3 (30) | 1 (20) | 1 (100) |
R | 12 (80.0) | 7 (70) | 4 (80) | 0 (0) | |
Tetracycline | S | 14 (93.3) | 2 (20) | 0 (0) | 1 (100) |
R | 1 (6.7) | 8 (80) | 5 (100) | 0 (0) | |
Amoxicillin/Clavulanic acid | S | 14 (93.3) | 9 (90) | 4 (80) | 1 (100) |
R | 1 (6.7) | 1 (10) | 1 (20) | 0 (0) | |
Ceftriaxone | S | 3 (20.0) | 2 (20) | 5 (100) | 1 (100) |
R | 12 (80.0) | 8 (80) | 0 (0) | 0 (0) | |
Penicillin | S | NT | NT | 0 (0) | 0 (0) |
R | 5 (100) | 1 (100) | |||
Linezolid | S | NT | NT | 5 (100) | 1 (100) |
R | 0 (0) | 0 (0) | |||
Teicoplanin | S | NT | NT | 5 (100) | 1 (100) |
R | 0 (0) | 0 (0) | |||
Erythromycin | S | NT | NT | 1 (20) | 1 (100) |
R | 4 (80) | 0 (0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Owusu, E.; Asane, F.W.; Bediako-Bowan, A.A.; Afutu, E. Bacterial Contamination of Surgical Instruments Used at the Surgery Department of a Major Teaching Hospital in a Resource-Limited Country: An Observational Study. Diseases 2022, 10, 81. https://doi.org/10.3390/diseases10040081
Owusu E, Asane FW, Bediako-Bowan AA, Afutu E. Bacterial Contamination of Surgical Instruments Used at the Surgery Department of a Major Teaching Hospital in a Resource-Limited Country: An Observational Study. Diseases. 2022; 10(4):81. https://doi.org/10.3390/diseases10040081
Chicago/Turabian StyleOwusu, Enid, Francis W. Asane, Antoinette A. Bediako-Bowan, and Emmanuel Afutu. 2022. "Bacterial Contamination of Surgical Instruments Used at the Surgery Department of a Major Teaching Hospital in a Resource-Limited Country: An Observational Study" Diseases 10, no. 4: 81. https://doi.org/10.3390/diseases10040081
APA StyleOwusu, E., Asane, F. W., Bediako-Bowan, A. A., & Afutu, E. (2022). Bacterial Contamination of Surgical Instruments Used at the Surgery Department of a Major Teaching Hospital in a Resource-Limited Country: An Observational Study. Diseases, 10(4), 81. https://doi.org/10.3390/diseases10040081