Natural Bioactive Products and Alzheimer’s Disease Pathology: Lessons from Caenorhabditis elegans Transgenic Models
Abstract
:1. Introduction
2. Alzheimer’s Disease Etiopathology
3. Alzheimer Disease Prevention and Natural Products
4. Caenorhabditis elegans as a Model for the Screening of Natural Products with Health-Promoting Effects
5. Caenorhabditis elegans as Model of Alzheimer’s Disease
5.1. Human Aβ Transgenic C. elegans Models
5.1.1. Muscle Aβ-Expressing Models
5.1.2. Neuron Aβ-Expressing Models
5.2. Tauopathy Transgenic Models
6. Effects of Natural Products in Caenorhabditis elegans Models of Alzheimer’s Disease
6.1. Effects on Aβ Toxicity
6.2. Senile Plaque Formation and Accumulation
6.3. Effect on Toxicity Derived from Tau Aggregates
6.4. Oxidative Stress
6.5. Heat Stress Response
6.6. Transcription Factors Involved in Stress-Related Pathways
6.7. Other Chaperoness, Proteasome Activity and Autophagy
6.8. Inflammation
6.9. Acetyl-Choline Metabolism in Neuronal Synapsis
7. Conclusions and Future Perspectives
Funding
Acknowledgments
Conflicts of Interest
References
- Comas-Herrera, A.; Guerchet, M.; Karagiannidou, M.; Knapp, M.; Prince, M. World Alzheimer Report 2016: Improving Healthcare for People Living with Dementia: Coverage, Quality and Costs Now and in the Future. 2016. Available online: https://www.researchgate.net/publication/310457795_World_Alzheimer_Report_2016_Improving_healthcare_for_people_with_dementia_Coverage_quality_and_costs_now_and_in_the_future (accessed on 28 December 2021).
- Fan, L.; Mao, C.; Hu, X.; Zhang, S.; Yang, Z.; Hu, Z.; Sun, H.; Fan, Y.; Dong, Y.; Jing Yang, J.; et al. New Insights into the Pathogenesis of Alzheimer’s Disease. Front. Neurol. 2020, 10, 1312. [Google Scholar] [CrossRef]
- Kidd, M. Alzheimer’s Disease—An Electron Microscopical Study. Brain 1964, 87, 307–320. [Google Scholar] [CrossRef]
- Krigman, M.R.; Feldman, R.G.; Bensch, K. Alzheimer’s Presenile Dementia. A Histochemical and Electron Microscopic Study. Lab. Investig. 1965, 14, 381–396. [Google Scholar]
- Luse, S.A.; Smith, K.R. The Ultrastructure of Senile Plaques. Am. J. Pathol. 1964, 44, 553–563. [Google Scholar]
- Fillit, H.M.; O’Connell, A.W.; Brown, W.M.; Altstiel, L.D.; Anand, R.; Collins, K.; Ferris, S.H.; Khachaturian, Z.S.; Kinoshita, J.; Van Eldik, L.; et al. Barriers to Drug Discovery and Development for Alzheimer Disease. Alzheimer Dis. Assoc. Disord. 2002, 16, S1–S8. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Wu, Y.; Brown, M.; Link, C.D. Caenorhabditis elegans Model for Initial Screening and Mechanistic Evaluation of Potential New Drugs for Aging and Alzheimer’s Disease. In Methods of Behavior Analysis in Neuroscience; Buccafusco, J.J., Ed.; Frontiers in Neuroscience; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2009; ISBN 978-1-4200-5234-3. [Google Scholar]
- Somoza, V.; Molyneux, R.J.; Chen, Z.-Y.; Tomás-Barberán, F.; Hofmann, T. Guidelines for Research on Bioactive Constituents—A Journal of Agricultural and Food Chemistry Perspective. J. Agric. Food Chem. 2015, 63, 8103–8105. [Google Scholar] [CrossRef]
- Haass, C.; Koo, E.H.; Mellon, A.; Hung, A.Y.; Selkoe, D.J. Targeting of Cell-Surface Beta-Amyloid Precursor Protein to Lysosomes: Alternative Processing into Amyloid-Bearing Fragments. Nature 1992, 357, 500–503. [Google Scholar] [CrossRef]
- Regan, P.; Whitcomb, D.J.; Cho, K. Physiological and pathophysiological implications of synaptic tau. Neuroscientist 2017, 23, 137–151. [Google Scholar] [CrossRef] [Green Version]
- Jean, D.C.; Baas, P.W. It cuts two ways: Microtubule Loss During Alzheimer Disease. Embo J. 2013, 32, 2900–2902. [Google Scholar] [CrossRef] [Green Version]
- Dixit, R.; Ross, J.L.; Goldman, Y.E.; Holzbaur, E.L. Differential regulation of dynein and kinesin motor proteins by tau. Science 2008, 31, 1086–1089. [Google Scholar] [CrossRef] [Green Version]
- Kimura, T.; Whitcomb, D.J.; Jo, J.; Regan, P.; Piers, T.; Heo, S.; Brown, C.; Hashikawa, T.; Murayama, M.; Seok, H.; et al. Microtubule-associated protein tau is essential for long-term depression in the hippocampus. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014, 369, 20130144. [Google Scholar] [CrossRef] [Green Version]
- Billingsley, M.L.; Kincaid, R.L. Regulated Phosphorylation and Dephosphorylation of Tau Protein: Effects on Microtubule Interaction, Intracellular Trafficking and Neurodegeneration. Biochem. J. 1997, 323, 577–591. [Google Scholar] [CrossRef] [Green Version]
- Alonso, A.C.; Grundke-Iqbal, I.; Iqbal, K. Alzheimer’s Disease Hyperphosphorylated Tau Sequesters Normal Tau into Tangles of Filaments and Disassembles Microtubules. Nat. Med. 1996, 2, 783–787. [Google Scholar] [CrossRef]
- Grundke-Iqbal, I.; Iqbal, K.; Tung, Y.C.; Quinlan, M.; Wisniewski, H.M.; Binder, L.I. Abnormal phosphorylation of the microtubule-associated protein tau. (tau) in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. USA 1986, 83, 4913–4917. [Google Scholar] [CrossRef] [Green Version]
- Dickey, C.A.; Kamal, A.; Lundgren, K.; Klosak, N.; Bailey, R.M.; Dunmore, J.; Ash, P.; Shoraka, S.; Zlatkovic, J.; Eckman, C.B.; et al. The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J. Clin. Investig. 2007, 117, 648–658. [Google Scholar] [CrossRef] [Green Version]
- Jara, C.; Aranguiz, A.; Cerpa, W.; Tapia-Rojas, C.; Quintanilla, R.A. Genetic ablation of tau improves mitochondrial function and cognitive abilities in the hippocampus. Redox Biol. 2018, 18, 279–294. [Google Scholar] [CrossRef]
- Khan, S.S.; Bloom, G.S. Tau: The Center of a Signaling Nexus in Alzheimer’s Disease. Front. Neurosci. 2016, 10, 31. [Google Scholar] [CrossRef] [Green Version]
- Callahan, L.M.; Vaules, W.A.; Coleman, P.D. Quantitative decrease in synaptophysin message expression and increase in cathepsin D message expression in Alzheimer disease neurons containing neurofibrillary tangles. J. Neuropathol. Exp. Neurol. 1999, 58, 275–287. [Google Scholar] [CrossRef] [Green Version]
- Takeda, S.; Wegmann, S.; Cho, H.; DeVos, S.L.; Commins, C.; Roe, A.D.; Nicholls, S.B.; Carlson, G.A.; Pitstick, R.; Nobuhara, C.K.; et al. Neuronal uptake and propagation of a rare phosphorylated high-molecular-weight tau derived from Alzheimer’s disease brain. Nat. Commun. 2015, 6, 8490. [Google Scholar] [CrossRef]
- Shafiei, S.S.; Guerrero-Munoz, M.J.; Castillo-Carranza, D.L. Tau oligomers: Cytotoxicity, Propagation, and Mitochondrial Damage. Front. Aging Neurosci. 2017, 9, 83. [Google Scholar] [CrossRef] [Green Version]
- Lustbader, J.W.; Cirilli, M.; Lin, C.; Xu, H.W.; Takuma, K.; Wang, N.; Caspersen, C.; Chen, X.; Pollak, S.; Chaney, M.; et al. ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science 2004, 304, 448–452. [Google Scholar] [CrossRef] [Green Version]
- Hunt, D.L.; Castillo, P.E. Synaptic plasticity of NMDA receptors: Mechanisms and Functional Implications. Curr. Opin. Neurobiol. 2012, 22, 496–508. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Tian, J.; Du, H. Mitochondrial dysfunction and synaptic transmission failure in Alzheimer’s disease. J. Alzheimer’s Dis. 2017, 57, 1071–1086. [Google Scholar] [CrossRef] [Green Version]
- Ansari, N.; Khodagholi, F. Natural Products as Promising Drug Candidates for the Treatment of Alzheimer’s Disease: Molecular Mechanism Aspect. Curr. Neuropharmacol. 2013, 11, 414–429. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Barve, K.H.; Kumar, M.S. Recent Advancements in Pathogenesis, Diagnostics and Treatment of Alzheimer’s Disease. Curr. Neuropharmacol. 2020, 18, 1106–1125. [Google Scholar] [CrossRef]
- Sekine-Aizawa, Y.; Hama, E.; Watanabe, K.; Tsubuki, S.; Kanai-Azuma, M.; Kanai, Y.; Arai, H.; Aizawa, H.; Iwata, N.; Saido, T.C. Matrix metalloproteinase (MMP) system in brain: Identification and Characterization of Brain-Specific MMP Highly Expressed in Cerebellum. Eur. J. Neurosci. 2001, 13, 935–948. [Google Scholar] [CrossRef]
- Willem, M.; Tahirovic, S.; Busche, M.A.; Ovsepian, S.V.; Chafai, M.; Kootar, S.; Hornburg, D.; Evans, L.D.B.; Moore, S.; Daria, A.; et al. Eta-secretase processing of APP inhibits neuronal activity in the hippocampus. Nature 2015, 526, 443–447. [Google Scholar] [CrossRef]
- Hampel, H.; Mesulam, M.M.; Cuello, A.C.; Farlow, M.R.; Giacobini, E.; Grossberg, G.T.; Khachaturian, A.S.; Vergallo, A.; Cavedo, E.; Snyder, P.J.; et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 2018, 141, 1917–1933. [Google Scholar] [CrossRef]
- Grimm, M.O.W.; Hartmann, T. Recent understanding of the molecular mechanisms of Alzheimer’s disease. J. Addict Res. Ther. 2012, S5. [Google Scholar]
- Ferreira-Vieira, T.H.; Guimaraes, I.M.; Silva, F.R.; Ribeiro, F.M. Alzheimer’s disease: Targeting the cholinergic system. Curr. Neuropharmacol. 2016, 14, 101–115. [Google Scholar] [CrossRef] [Green Version]
- Leanza, G.; Gulino, R.; Zorec, R. Noradrenergic hypothesis linking neurodegeneration-based cognitive decline and astroglia. Front. Mol. Neurosci. 2018, 11, 254. [Google Scholar] [CrossRef] [Green Version]
- Vakalopoulos, C. Alzheimer’s Disease: The alternative serotonergic hypothesis of cognitive decline. J. Alzheimer’s Dis. 2017, 60, 859–866. [Google Scholar] [CrossRef]
- Yun, H.M.; Park, K.R.; Kim, E.C.; Kim, S.; Hong, J.T. Serotonin 6 receptor controls Alzheimer’s disease and depression. Oncotarget 2015, 6, 26716–26728. [Google Scholar] [CrossRef]
- Tanzi, R.E. The genetics of Alzheimer disease. Cold Spring Harb. Perspect. Med. 2012, 2, a006296. [Google Scholar] [CrossRef]
- Hutton, M.; Pérez-Tur, J.; Hardy, J. Genetics of Alzheimer’s Disease. Essays Biochem. 1998, 33, 117–131. [Google Scholar] [CrossRef] [Green Version]
- Spillantini, M.G.; Murrell, J.R.; Goedert, M.; Farlow, M.; Klug, A.; Ghetti, B. Mutations in the Tau Gene (MAPT) in FTDP-17: The Family with Multiple System Tauopathy with Presenile Dementia (MSTD). J. Alzheimer’s Dis. 2006, 9, 373–380. [Google Scholar] [CrossRef]
- Chartier-Harlin, M.C.; Crawford, F.; Houlden, H.; Warren, A.; Hughes, D.; Fidani, L.; Goate, A.; Rossor, M.; Roques, P.; Hardy, J. Early-Onset Alzheimer’s Disease Caused by Mutations at Codon 717 of the Beta-Amyloid Precursor Protein Gene. Nature 1991, 353, 844–846. [Google Scholar] [CrossRef]
- Chartier-Harlin, M.C.; Crawford, F.; Hamandi, K.; Mullan, M.; Goate, A.; Hardy, J.; Backhovens, H.; Martin, J.J.; Broeckhoven, C.V. Screening for the Beta-Amyloid Precursor Protein Mutation (APP717: Val----Ile) in Extended Pedigrees with Early Onset Alzheimer’s Disease. Neurosci. Lett. 1991, 129, 134–135. [Google Scholar] [CrossRef]
- Murrell, J.; Farlow, M.; Ghetti, B.; Benson, M.D. A Mutation in the Amyloid Precursor Protein Associated with Hereditary Alzheimer’s Disease. Science 1991, 254, 97–99. [Google Scholar] [CrossRef]
- Lambert, J.C.; Amouyel, P. Genetics of Alzheimer’s disease: New Evidences for an Old Hypothesis? Curr. Opin. Genet. Dev. 2011, 21, 295–301. [Google Scholar] [CrossRef]
- Giri, M.; Zhang, M.; Lu, Y. Genes associated with Alzheimer’s disease: An Overview and Current Status. Clin. Interv. Aging 2016, 11, 665–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahley, R.W. Apolipoprotein E: Cholesterol Transport Protein with Expanding Role in Cell Biology. Science 1988, 240, 622–630. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Pozo, A.; Qian, J.; Monsell, S.E.; Betensky, R.A.; Hyman, B.T. APOEepsilon2 is associated with milder clinical and pathological Alzheimer disease. Ann. Neurol. 2015, 77, 917–929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamagata, K.; Urakami, K.; Ikeda, K.; Ji, Y.; Adachi, Y.; Arai, H. High expression of apolipoprotein E mRNA in the brains with sporadic Alzheimer’s disease. Dement Geriatr. Cogn. Disord. 2001, 12, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Raygani, A.V.; Zahrai, M.; Raygani, A.V.; Doosti, M.; Javadi, E.; Rezaei, M.; Pourmotabbed, T. Association between apolipoprotein E polymorphism and Alzheimer disease in Tehran, Iran. Neurosci. Lett 2005, 375, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Hudry, E.; Dashkoff, J.; Roe, A.D.; Takeda, S.; Koffie, R.M.; Hashimoto, T.; Scheel, M.; Spires-Jones, T.; Arbel-Ornath, M.; Betensky, R.; et al. Gene transfer of human Apoe isoforms results in differential modulation of amyloid deposition and neurotoxicity in mouse brain. Sci. Transl. Med. 2013, 5, 212ra161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pankiewicz, J.E.; Guridi, M.; Kim, J.; Asuni, A.A.; Sanchez, S.; Sullivan, P.M.; Holtzman, D.M.; Sadowski, M.J. Blocking the apoE/Aβ interaction ameliorates Aβ-related pathology in APOE epsilon2 and epsilon4 targeted replacement Alzheimer model mice. Acta Neuropathol. Commun. 2014, 2, 75. [Google Scholar] [CrossRef] [Green Version]
- Selkoe, D.J. The molecular pathology of Alzheimer’s disease. Neuron 1991, 6, 487–498. [Google Scholar] [CrossRef]
- Frost, B.; Jacks, R.L. Diamond MI. Propagation of tau misfolding from the outside to the inside of a cell. J. Biol. Chem. 2009, 284, 12845–12852. [Google Scholar] [CrossRef] [Green Version]
- Scheuner, D.; Eckman, C.; Jensen, M.; Song, X.; Citron, M.; Suzuki, N.; Bird, T.D.; Hardy, J.; Hutton, M.; Kukull, W.; et al. Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat. Med. 1996, 2, 864–870. [Google Scholar] [CrossRef]
- Di Carlo, M.; Giacomazza, D.; San Biagio, P.L. Alzheimer’s disease: Biological Aspects, Therapeutic Perspectives and Diagnostic Tools. J. Phys. Condens. Matter. 2012, 24, 244102. [Google Scholar] [CrossRef] [PubMed]
- Mocanu, M.M.; Nissen, A.; Eckermann, K.; Khlistunova, I.; Biernat, J.; Drexler, D.; Petrova, O.; Schönig, K.; Bujard, H.; Mandelkow, E.; et al. The potential for beta-structure in the repeat domain of tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous Tau in inducible mouse models of tauopathy. J. Neurosci. 2008, 28, 737–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Busche, M.A.; Wegman, S.; Dujardin, S.; Commins, C.; Schiantarelli, J.; Klickstein, N.; Kamath, T.; Carlson, G.; Nelken, I.; Hyman, B. Tau impairs neural circuits, dominating amyloid-β effects, in Alzheimer models in vivo. Nat. Neurosci. 2019, 22, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Cotman, C.W.; Poon, W.W.; Rissman, R.A.; Blurton-Jones, M. The role of caspase cleavage of tau in Alzheimer disease neuropathology. J. Neuropathol Exp. Neurol. 2005, 64, 104–112. [Google Scholar] [CrossRef] [Green Version]
- Guo, T.; Noble, W.; Hanger, D.P. Roles of tau protein in health and disease. Acta Neuropathol. 2017, 133, 665–704. [Google Scholar] [CrossRef] [Green Version]
- Jadhav, S.; Katina, S.; Kovac, A.; Kazmerova, Z.; Novak, M.; Zilka, N. Truncated tau deregulates synaptic markers in rat model for human tauopathy. Front. Cell. Neurosci. 2015, 9, 24. [Google Scholar] [CrossRef] [Green Version]
- Ittner, A.; Ittner, L.M. Dendritic tau in Alzheimer’s Disease. Neuron 2018, 99, 13–27. [Google Scholar] [CrossRef] [Green Version]
- Rasool, S.; Martinez-Coria, H.; Wu, J.W.; LaFerla, F.; Glabe, C.G. Systemic vaccination with anti-oligomeric monoclonal antibodies improves cognitive function by reducing Aβ deposition and tau pathology in 3xTg-AD mice. J. Neurochem. 2013, 126, 473–482. [Google Scholar] [CrossRef] [Green Version]
- Vergara, C.; Houben, S.; Suain, V.; Yilmaz, Z.; De Decker, R.; Vanden Dries, V.; Boom, A.; Mansour, S.; Leroy, K.; Ando, K.; et al. Amyloid-β pathology enhances pathological fibrillary tau seeding induced by Alzheimer PHF in vivo. Acta Neuropathol. 2019, 137, 397–412. [Google Scholar] [CrossRef] [Green Version]
- Holtta, M.; Hansson, O.; Andreasson, U.; Hertze, J.; Minthon, L.; Nagga, K.; Andearsen, N.; Zetterberg, H.; Blennow, K. Evaluating amyloid-β oligomers in cerebrospinal fluid as a biomarker for Alzheimer’s disease. PLoS ONE. 2013, 8, e66381. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Hong, S.; Shepardson, N.E.; Walsh, D.M.; Shankar, G.M.; Selkoe, D. Soluble oligomers of amyloid Beta protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron 2009, 62, 788–801. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, S.T.; Klein, W.L. The Aβ oligomer hypothesis for synapse failure and memory loss in Alzheimer’s disease. Neurobiol. Learn Mem. 2011, 96, 529–543. [Google Scholar] [CrossRef] [Green Version]
- Butterfield, D.A.; Halliwell, B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci. 2019, 20, 148–160. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Greenway, F.L. Caenorhabditis elegans as a Model for Obesity Research. Int. J. Obes. 2012, 36, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Hengartner, M.O.; Horvitz, H.R. C. elegans Cell Survival Gene Ced-9 Encodes a Functional Homolog of the Mammalian Proto-Oncogene Bcl-2. Cell 1994, 76, 665–676. [Google Scholar] [CrossRef]
- Stiernagle, T. Maintenance of C. elegans. In WormBook: The Online Review of C. elegans Biology; 2006; pp. 1551–8507. Available online: https://www.ncbi.nlm.nih.gov/books/NBK19649/ (accessed on 28 December 2021).
- Lee, J.H.; Khor, T.O.; Shu, L.; Su, Z.-Y.; Fuentes, F.; Kong, A.-N.T. Dietary Phytochemicals and Cancer Prevention: Nrf2 Signaling, Epigenetics, and Cell Death Mechanisms in Blocking Cancer Initiation and Progression. Pharmacol. Ther. 2013, 137, 153–171. [Google Scholar] [CrossRef] [Green Version]
- Shen, P.; Yue, Y.; Zheng, J.; Park, Y. Caenorhabditis Elegans: A Convenient In Vivo Model for Assessing the Impact of Food Bioactive Compounds on Obesity, Aging, and Alzheimer’s Disease. Annu. Rev. Food Sci. Technol. 2018, 9, 1–22. [Google Scholar] [CrossRef]
- Kaletta, T.; Hengartner, M.O. Finding Function in Novel Targets: C. elegans as a Model Organism. Nat. Rev. Drug Discov. 2006, 5, 387–398. [Google Scholar] [CrossRef]
- Stawicki, T.M.; Zhou, K.; Yochem, J.; Chen, L.; Jin, Y. TRPM Channels Modulate Epileptic-like Convulsions via Systemic Ion Homeostasis. Curr. Biol. 2011, 21, 883–888. [Google Scholar] [CrossRef] [Green Version]
- Solis, G.M.; Petrascheck, M. Measuring Caenorhabditis elegans Life Span in 96 Well Microtiter Plates. J. Vis. Exp. 2011, 49, e2496. [Google Scholar] [CrossRef] [Green Version]
- Helmcke, K.J.; Avila, D.S.; Aschner, M. Utility of Caenorhabditis elegans in High Throughput Neurotoxicological Research. Neurotoxicol. Teratol. 2010, 32, 62–67. [Google Scholar] [CrossRef]
- Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and Specific Genetic Interference by Double-Stranded RNA in Caenorhabditis elegans. Nature 1998, 391, 806–811. [Google Scholar] [CrossRef]
- White, J.G.; Southgate, E.; Thomson, J.N.; Brenner, S. The Structure of the Nervous System of the Nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1986, 314, 1–340. [Google Scholar] [CrossRef]
- White, J.G.; Southgate, E.; Thomson, J.N.; Brenner, S. The Structure of the Ventral Nerve Cord of Caenorhabditis elegans. Philos. Trans. R Soc. Lond. B Biol. Sci. 1976, 275, 327–348. [Google Scholar] [CrossRef]
- Daigle, I.; Li, C. Apl-1, a Caenorhabditis elegans Gene Encoding a Protein Related to the Human Beta-Amyloid Protein Precursor. Proc. Natl. Acad. Sci. USA 1993, 90, 12045–12049. [Google Scholar] [CrossRef] [Green Version]
- Miyasaka, T.; Xie, C.; Yoshimura, S.; Shinzaki, Y.; Yoshina, S.; Kage-Nakadai, E.; Mitani, S.; Ihara, Y. Curcumin improves tau-induced neuronal dysfunction of nematodes. Neurobiol. Aging 2016, 39, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Fatouros, C.; Pir, G.J.; Biernat, J.; Koushika, S.P.; Mandelkow, E.; Mandelkow, E.M.; Schmidt, E.; Baumeister, R. Inhibition of tau aggregation in a novel Caenorhabditis elegans model of tauopathy mitigates proteotoxicity. Hum. Mol. Genet. 2012, 21, 3587–3603. [Google Scholar] [CrossRef] [Green Version]
- Link, C.D. C. elegans Models of Age-Associated Neurodegenerative Diseases: Lessons from Transgenic Worm Models of Alzheimer’s Disease. Exp. Gerontol. 2006, 41, 1007–1013. [Google Scholar] [CrossRef]
- Goedert, M.; Baur, C.P.; Ahringer, J.; Jakes, R.; Hasegawa, M.; Spillantini, M.G.; Smith, M.J.; Hill, F. PTL-1, a Microtubule-Associated Protein with Tau-like Repeats from the Nematode Caenorhabditis elegans. J. Cell Sci. 1996, 109, 2661–2672. [Google Scholar] [CrossRef]
- Gordon, P.; Hingula, L.; Krasny, M.L.; Swienckowski, J.L.; Pokrywka, N.J.; Raley-Susman, K.M. The Invertebrate Microtubule-Associated Protein PTL-1 Functions in Mechanosensation and Development in Caenorhabditis elegans. Dev. Genes Evol. 2008, 218, 541–551. [Google Scholar] [CrossRef] [Green Version]
- Chew, Y.L.; Fan, X.; Götz, J.; Nicholas, H.R. PTL-1 Regulates Neuronal Integrity and Lifespan in C. elegans. J. Cell Sci. 2013, 126, 2079–2091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Link, C.D. Expression of Human Beta-Amyloid Peptide in Transgenic Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 1995, 92, 9368–9372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Link, C.D.; Taft, A.; Kapulkin, V.; Duke, K.; Kim, S.; Fei, Q.; Wood, D.E.; Sahagan, B.G. Gene Expression Analysis in a Transgenic Caenorhabditis elegans Alzheimer’s Disease Model. Neurobiol. Aging 2003, 24, 397–413. [Google Scholar] [CrossRef]
- Dostal, V.; Link, C.D. Assaying β-Amyloid Toxicity Using a Transgenic C. elegans Model. J. Vis. Exp. 2010, 44, e2252. [Google Scholar] [CrossRef] [Green Version]
- Ochiishi, T.; Doi, M.; Yamasaki, K.; Hirose, K.; Kitamura, A.; Urabe, T.; Hattori, N.; Kinjo, M.; Ebihara, T.; Shimura, H. Development of New Fusion Proteins for Visualizing Amyloid-β Oligomers in Vivo. Sci. Rep. 2016, 6, 22712. [Google Scholar] [CrossRef]
- Lublin, A.L.; Link, C.D. Alzheimer’s Disease Drug Discovery: In Vivo Screening Using Caenorhabditis elegans as a Model for β-Amyloid Peptide-Induced Toxicity. Drug Discov. Today Technol. 2013, 10, e115–e119. [Google Scholar] [CrossRef] [Green Version]
- Asikainen, S.; Vartiainen, S.; Lakso, M.; Nass, R.; Wong, G. Selective Sensitivity of Caenorhabditis elegans Neurons to RNA Interference. NeuroReport 2005, 16, 1995–1999. [Google Scholar] [CrossRef] [Green Version]
- Dosanjh, L.E.; Brown, M.K.; Rao, G.; Link, C.D.; Luo, Y. Behavioral Phenotyping of a Transgenic Caenorhabditis elegans Expressing Neuronal Amyloid-Beta. J. Alzheimer’s Dis. JAD 2010, 19, 681–690. [Google Scholar] [CrossRef]
- Treusch, S.; Hamamichi, S.; Goodman, J.L.; Matlack, K.E.S.; Chung, C.Y.; Baru, V.; Shulman, J.M.; Parrado, A.; Bevis, B.J.; Valastyan, J.S.; et al. Functional Links between Aβ Toxicity, Endocytic Trafficking, and Alzheimer’s Disease Risk Factors in Yeast. Science 2011, 334, 1241–1245. [Google Scholar] [CrossRef] [Green Version]
- Ewald, C.Y.; Cheng, R.; Tolen, L.; Shah, V.; Gillani, A.; Nasrin, A.; Li, C. Pan-Neuronal Expression of APL-1, an APP-Related Protein, Disrupts Olfactory, Gustatory, and Touch Plasticity in Caenorhabditis elegans. J. Neurosci. 2012, 32, 10156–10169. [Google Scholar] [CrossRef] [Green Version]
- Brandt, R.; Gergou, A.; Wacker, I.; Fath, T.; Hutter, H. A Caenorhabditis elegans Model of Tau Hyperphosphorylation: Induction of Developmental Defects by Transgenic Overexpression of Alzheimer’s Disease-like Modified Tau. Neurobiol. Aging 2009, 30, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, B.C.; Zhang, B.; Leverenz, J.B.; Thomas, J.H.; Trojanowski, J.Q.; Schellenberg, G.D. Neurodegeneration and Defective Neurotransmission in a Caenorhabditis elegans Model of Tauopathy. Proc. Natl. Acad. Sci. USA 2003, 100, 9980–9985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyasaka, T.; Ding, Z.; Gengyo-Ando, K.; Oue, M.; Yamaguchi, H.; Mitani, S.; Ihara, Y. Progressive Neurodegeneration in C. elegans Model of Tauopathy. Neurobiol. Dis. 2005, 20, 372–383. [Google Scholar] [CrossRef]
- Link, P.; Wetterauer, B.; Fu, Y.; Wink, M. Extracts of Glycyrrhiza Uralensis and Isoliquiritigenin Counteract Amyloid-β Toxicity in Caenorhabditis elegans. Planta Med. 2015, 81, 357–362. [Google Scholar] [CrossRef] [Green Version]
- Thabit, S.; Handoussa, H.; Roxo, M.; El Sayed, N.S.; Cestari de Azevedo, B.; Wink, M. Evaluation of Antioxidant and Neuroprotective Activities of Cassia fistula (L.) Using the Caenorhabditis elegans Model. PeerJ 2018, 6, e5159. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Wu, Z.; Butko, P.; Christen, Y.; Lambert, M.P.; Klein, W.L.; Link, C.D.; Luo, Y. Amyloid-Beta-Induced Pathological Behaviors Are Suppressed by Ginkgo Biloba Extract EGb 761 and Ginkgolides in Transgenic Caenorhabditis elegans. J. Neurosci. Off. J. Soc. Neurosci. 2006, 26, 13102–13113. [Google Scholar] [CrossRef]
- Duangjan, C.; Rangsinth, P.; Zhang, S.; Gu, X.; Wink, M.; Tencomnao, T. Neuroprotective Effects of Glochidion Zeylanicum Leaf Extract against H2O2/Glutamate-Induced Toxicity in Cultured Neuronal Cells and Aβ-Induced Toxicity in Caenorhabditis elegans. Biology 2021, 10, 800. [Google Scholar] [CrossRef]
- Zhao, L.; Duan, Z.; Wang, Y.; Wang, M.; Liu, Y.; Wang, X.; Li, H. Protective Effect of Terminalia Chebula Retz. Extract against Aβ Aggregation and Aβ-Induced Toxicity in Caenorhabditis elegans. J. Ethnopharmacol. 2021, 268, 113640. [Google Scholar] [CrossRef]
- Chauhan, A.P.; Chaubey, M.G.; Patel, S.N.; Madamwar, D.; Singh, N.K. Extension of Life Span and Stress Tolerance Modulated by DAF-16 in Caenorhabditis elegans under the Treatment of Moringa Oleifera Extract. 3 Biotech 2020, 10, 504. [Google Scholar] [CrossRef]
- Yan, L.; He, X.; Jin, Y.; Wang, J.; Liang, F.; Pei, R.; Li, P.; Wang, Y.; Su, W. Modulation of the Aβ-Peptide-Aggregation Pathway by Active Compounds from Platycladus Orientalis Seed Extract in Alzheimer’s Disease Models. Front. Aging Neurosci. 2020, 12, 207. [Google Scholar] [CrossRef]
- Paiva, F.A.; de Freitas Bonomo, L.; Boasquivis, P.F.; de Paula, I.T.B.R.; da Costa Guerra, J.F.; Leal, W.M.; Silva, M.E.; Pedrosa, M.L.; de Paula Oliveira, R. Carqueja (Baccharis trimera) Protects against Oxidative Stress and β-Amyloid-Induced Toxicity in Caenorhabditis elegans. Oxid. Med. Cell. Longev. 2015, 2015, 740162. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.-Y.; Liao, D.-C.; Sun, M.-L.; Cui, X.-H.; Wang, H.-B. Essential Oil of Acorus Tatarinowii Schott Ameliorates Aβ-Induced Toxicity in Caenorhabditis elegans through an Autophagy Pathway. Oxid. Med. Cell. Longev. 2020, 2020, 3515609. [Google Scholar] [CrossRef] [PubMed]
- Fei, T.; Fei, J.; Huang, F.; Xie, T.; Xu, J.; Zhou, Y.; Yang, P. The Anti-Aging and Anti-Oxidation Effects of Tea Water Extract in Caenorhabditis elegans. Exp. Gerontol. 2017, 97, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Dostal, V.; Roberts, C.M.; Link, C.D. Genetic Mechanisms of Coffee Extract Protection in a Caenorhabditis elegans Model of β-Amyloid Peptide Toxicity. Genetics 2010, 186, 857–866. [Google Scholar] [CrossRef] [Green Version]
- Heiner, F.; Feistel, B.; Wink, M. Sideritis Scardica Extracts Inhibit Aggregation and Toxicity of Amyloid-β in Caenorhabditis elegans Used as a Model for Alzheimer’s Disease. PeerJ 2018, 6, e4683. [Google Scholar] [CrossRef] [Green Version]
- Les, F.; Valero, M.S.; Moliner, C.; Weinkove, D.; López, V.; Gómez-Rincón, C. Jasonia glutinosa (L.) DC., a Traditional Herbal Tea, Exerts Antioxidant and Neuroprotective Properties in Different In Vitro and In Vivo Systems. Biology 2021, 10, 443. [Google Scholar] [CrossRef]
- Machado, M.L.; Arantes, L.P.; da Silveira, T.L.; Zamberlan, D.C.; Cordeiro, L.M.; Obetine, F.B.B.; da Silva, A.F.; da Cruz, I.B.M.; Soares, F.A.A.; Oliveira, R.d.P. Ilex Paraguariensis Extract Provides Increased Resistance against Oxidative Stress and Protection against Amyloid Beta-Induced Toxicity Compared to Caffeine in Caenorhabditis elegans. Nutr. Neurosci. 2021, 24, 697–709. [Google Scholar] [CrossRef]
- Ma, H.; DaSilva, N.A.; Liu, W.; Nahar, P.P.; Wei, Z.; Liu, Y.; Pham, P.T.; Crews, R.; Vattem, D.A.; Slitt, A.L.; et al. Effects of a Standardized Phenolic-Enriched Maple Syrup Extract on β-Amyloid Aggregation, Neuroinflammation in Microglial and Neuronal Cells, and β-Amyloid Induced Neurotoxicity in Caenorhabditis elegans. Neurochem. Res. 2016, 41, 2836–2847. [Google Scholar] [CrossRef] [Green Version]
- Navarro-Hortal, M.D.; Romero-Márquez, J.M.; Esteban-Muñoz, A.; Sánchez-González, C.; Rivas-García, L.; Llopis, J.; Cianciosi, D.; Giampieri, F.; Sumalla-Cano, S.; Battino, M.; et al. Strawberry (Fragaria × Ananassa Cv. Romina) Methanolic Extract Attenuates Alzheimer’s Beta Amyloid Production and Oxidative Stress by SKN-1/NRF and DAF-16/FOXO Mediated Mechanisms in C. elegans. Food Chem. 2022, 372, 131272. [Google Scholar] [CrossRef]
- Liu, W.; Ma, H.; DaSilva, N.A.; Rose, K.N.; Johnson, S.L.; Zhang, L.; Wan, C.; Dain, J.A.; Seeram, N.P. Development of a Neuroprotective Potential Algorithm for Medicinal Plants. Neurochem. Int. 2016, 100, 164–177. [Google Scholar] [CrossRef]
- Yuan, T.; Ma, H.; Liu, W.; Niesen, D.B.; Shah, N.; Crews, R.; Rose, K.N.; Vattem, D.A.; Seeram, N.P. Pomegranate’s Neuroprotective Effects against Alzheimer’s Disease Are Mediated by Urolithins, Its Ellagitannin-Gut Microbial Derived Metabolites. ACS Chem. Neurosci. 2016, 7, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Boasquívis, P.F.; Silva, G.M.M.; Paiva, F.A.; Cavalcanti, R.M.; Nunez, C.V.; de Paula Oliveira, R. Guarana (Paullinia cupana) Extract Protects Caenorhabditis elegans Models for Alzheimer Disease and Huntington Disease through Activation of Antioxidant and Protein Degradation Pathways. Oxid. Med. Cell. Longev. 2018, 2018, 9241308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, H.; Dong, Y.-Q.; Ye, B.-P. Cranberry Extract Supplementation Exerts Preventive Effects through Alleviating Aβ Toxicity in Caenorhabditis elegans Model of Alzheimer’s Disease. Chin. J. Nat. Med. 2016, 14, 427–433. [Google Scholar] [CrossRef]
- Parween, N.; Jabeen, A.; Prasad, B. Eugenol Elicits Prolongevity by Increasing Resistance to Oxidative Stress in C. elegans. CNS Neurol. Disord. Drug Targets 2021, 21, 841–853. [Google Scholar] [CrossRef]
- Rivas-García, L.; Quiles, J.L.; Roma-Rodrigues, C.; Raposo, L.R.; Navarro-Hortal, M.D.; Romero-Márquez, J.M.; Esteban-Muñoz, A.; Varela-López, A.; García, L.C.; Cianciosi, D.; et al. Rosa x Hybrida Extracts with Dual Actions: Antiproliferative Effects Against Tumour Cells and Inhibitor of Alzheimer Disease. Food Chem. Toxicol. 2021, 149, 112018. [Google Scholar] [CrossRef] [PubMed]
- Koch, K.; Weldle, N.; Baier, S.; Büchter, C.; Wätjen, W. Hibiscus Sabdariffa, L. Extract Prolongs Lifespan and Protects against Amyloid-β Toxicity in Caenorhabditis elegans: Involvement of the FoxO and Nrf2 Orthologues DAF-16 and SKN-1. Eur. J. Nutr. 2020, 59, 137–150. [Google Scholar] [CrossRef]
- Moliner, C.; Barros, L.; Dias, M.I.; Reigada, I.; Ferreira, I.C.F.R.; López, V.; Langa, E.; Rincón, C.G. Viola Cornuta and Viola x Wittrockiana: Phenolic Compounds, Antioxidant and Neuroprotective Activities on Caenorhabditis elegans. J. Food Drug Anal. 2019, 27, 849–859. [Google Scholar] [CrossRef]
- Zhu, S.; Li, H.; Dong, J.; Yang, W.; Liu, T.; Wang, Y.; Wang, X.; Wang, M.; Zhi, D. Rose Essential Oil Delayed Alzheimer’s Disease-Like Symptoms by SKN-1 Pathway in C. elegans. J. Agric. Food Chem. 2017, 65, 8855–8865. [Google Scholar] [CrossRef]
- Yen, P.-L.; Cheng, S.-S.; Wei, C.-C.; Lina, H.-Y.; Liao, V.H.-C.; Chang, S.-T. Antioxidant Activities and Reduced Amyloid-β Toxicity of 7-Hydroxycalamenene Isolated from the Essential Oil of Zelkova Serrata Heartwood. Nat. Prod. Commun. 2016, 11, 1357–1362. [Google Scholar] [CrossRef] [Green Version]
- Shanmuganathan, B.; Sathya, S.; Balasubramaniam, B.; Balamurugan, K.; Devi, K.P. Amyloid-β Induced Neuropathological Actions Are Suppressed by Padina Gymnospora (Phaeophyceae) and Its Active Constituent α-Bisabolol in Neuro2a Cells and Transgenic Caenorhabditis elegans Alzheimer’s Model. Nitric Oxide Biol. Chem. 2019, 91, 52–66. [Google Scholar] [CrossRef]
- Manalo, R.V.; Silvestre, M.A.; Barbosa, A.L.A.; Medina, P.M. Coconut (Cocos nucifera) Ethanolic Leaf Extract Reduces Amyloid-β (1-42) Aggregation and Paralysis Prevalence in Transgenic Caenorhabditis elegans Independently of Free Radical Scavenging and Acetylcholinesterase Inhibition. Biomedicines 2017, 5, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martorell, P.; Bataller, E.; Llopis, S.; Gonzalez, N.; Alvarez, B.; Montón, F.; Ortiz, P.; Ramón, D.; Genovés, S. A Cocoa Peptide Protects Caenorhabditis elegans from Oxidative Stress and β-Amyloid Peptide Toxicity. PLoS ONE 2013, 8, e63283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filippopoulou, K.; Papaevgeniou, N.; Lefaki, M.; Paraskevopoulou, A.; Biedermann, D.; Křen, V.; Chondrogianni, N. 2,3-Dehydrosilybin A/B as a pro-Longevity and Anti-Aggregation Compound. Free Radic. Biol. Med. 2017, 103, 256–267. [Google Scholar] [CrossRef] [PubMed]
- Keowkase, R.; Weerapreeyakul, N. Cratoxylum Formosum Extract Protects against Amyloid-Beta Toxicity in a Caenorhabditis elegans Model of Alzheimer’s Disease. Planta Med. 2016, 82, 516–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuen, C.W.; Murugaiyah, V.; Najimudin, N.; Azzam, G. Danshen (Salvia miltiorrhiza) Water Extract Shows Potential Neuroprotective Effects in Caenorhabditis elegans. J. Ethnopharmacol. 2021, 266, 113418. [Google Scholar] [CrossRef]
- Takahashi, A.; Watanabe, T.; Fujita, T.; Hasegawa, T.; Saito, M.; Suganuma, M. Green Tea Aroma Fraction Reduces β-Amyloid Peptide-Induced Toxicity in Caenorhabditis elegans Transfected with Human β-Amyloid Minigene. Biosci. Biotechnol. Biochem. 2014, 78, 1206–1211. [Google Scholar] [CrossRef]
- Du, F.; Zhou, L.; Jiao, Y.; Bai, S.; Wang, L.; Ma, J.; Fu, X. Ingredients in Zijuan Pu’er Tea Extract Alleviate β-Amyloid Peptide Toxicity in a Caenorhabditis elegans Model of Alzheimer’s Disease Likely through DAF-16. Molecules 2019, 24, 729. [Google Scholar] [CrossRef] [Green Version]
- Kittimongkolsuk, P.; Pattarachotanant, N.; Chuchawankul, S.; Wink, M.; Tencomnao, T. Neuroprotective Effects of Extracts from Tiger Milk Mushroom Lignosus Rhinocerus Against Glutamate-Induced Toxicity in HT22 Hippocampal Neuronal Cells and Neurodegenerative Diseases in Caenorhabditis elegans. Biology 2021, 10, 30. [Google Scholar] [CrossRef]
- Sammi, S.R.; Trivedi, S.; Rath, S.K.; Nagar, A.; Tandon, S.; Kalra, A.; Pandey, R. 1-Methyl-4-Propan-2-Ylbenzene from Thymus Vulgaris Attenuates Cholinergic Dysfunction. Mol. Neurobiol. 2017, 54, 5468–5481. [Google Scholar] [CrossRef]
- Wu, P.-Q.; Yu, Y.-F.; Zhao, Y.; Yu, C.-X.; Zhi, D.-J.; Qi, F.-M.; Fei, D.-Q.; Zhang, Z.-X. Four Novel Sesquiterpenoids with Their Anti-Alzheimer’s Disease Activity from Nardostachys Chinensis. Org. Biomol. Chem. 2018, 16, 9038–9045. [Google Scholar] [CrossRef]
- Keowkase, R.; Shoomarom, N.; Bunargin, W.; Sitthithaworn, W.; Weerapreeyakul, N. Sesamin and Sesamolin Reduce Amyloid-β Toxicity in a Transgenic Caenorhabditis elegans. Biomed. Pharmacother. Biomed. Pharmacother. 2018, 107, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Diomede, L.; Rigacci, S.; Romeo, M.; Stefani, M.; Salmona, M. Oleuropein Aglycone Protects Transgenic C. elegans Strains Expressing Aβ42 by Reducing Plaque Load and Motor Deficit. PLoS ONE 2013, 8, e58893. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Zhao, J.; Wang, H.; Jiang, Y.; Yang, Q.; Fu, Y.; Zeng, H.; Hölscher, C.; Xu, J.; Zhang, Z. Magnolol Alleviates Alzheimer’s Disease-like Pathology in Transgenic C. elegans by Promoting Microglia Phagocytosis and the Degradation of Beta-Amyloid through Activation of PPAR-γ. Biomed. Pharmacother. 2020, 124, 109886. [Google Scholar] [CrossRef] [PubMed]
- Su, P.-J.; Zhang, Z.-P.; Cui, W.-B.; Liu, X.; Wang, R.-Y.; Zhi, D.-J.; Qi, F.-M.; Chen, X.-H.; Li, Y.-Q.; Djimabi, K.; et al. Polyoxygenated Sesquiterpenoids from Salvia Castanea and Their Potential Anti-Alzheime’s Disease Bioactivities. Fitoterapia 2021, 151, 104867. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Huang, X.-B.; Wan, Q.-L.; Ding, A.-J.; Yang, Z.-L.; Qiu, M.-H.; Sun, H.-Y.; Qi, S.-H.; Luo, H.-R. Otophylloside B Protects Against Aβ Toxicity in Caenorhabditis elegans Models of Alzheimer’s Disease. Nat. Prod. Bioprospect. 2017, 7, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Imamura, T.; Koga, H.; Higashimura, Y.; Isozumi, N.; Matsumoto, K.; Ohki, S.; Mori, M. Red-Beet Betalain Pigments Inhibit Amyloid-β Aggregation and Toxicity in Amyloid-β Expressing Caenorhabditis elegans. Plant Foods Hum. Nutr. 2021, 77, 90–97. [Google Scholar] [CrossRef]
- Jagota, S.; Rajadas, J. Effect of Phenolic Compounds against Aβ Aggregation and Aβ-Induced Toxicity in Transgenic C. elegans. Neurochem. Res. 2012, 37, 40–48. [Google Scholar] [CrossRef]
- Kalmankar, N.V.; Hari, H.; Sowdhamini, R.; Venkatesan, R. Disulfide-Rich Cyclic Peptides from Clitoria ternatea Protect against β-Amyloid Toxicity and Oxidative Stress in Transgenic Caenorhabditis elegans. J. Med. Chem. 2021, 64, 7422–7433. [Google Scholar] [CrossRef]
- Regitz, C.; Fitzenberger, E.; Mahn, F.L.; Dußling, L.M.; Wenzel, U. Resveratrol Reduces Amyloid-Beta (Aβ₁₋₄₂)-Induced Paralysis through Targeting Proteostasis in an Alzheimer Model of Caenorhabditis elegans. Eur. J. Nutr. 2016, 55, 741–747. [Google Scholar] [CrossRef]
- Akhoon, B.A.; Pandey, S.; Tiwari, S.; Pandey, R. Withanolide A Offers Neuroprotection, Ameliorates Stress Resistance and Prolongs the Life Expectancy of Caenorhabditis elegans. Exp. Gerontol. 2016, 78, 47–56. [Google Scholar] [CrossRef]
- Sciacca, M.F.M.; Romanucci, V.; Zarrelli, A.; Monaco, I.; Lolicato, F.; Spinella, N.; Galati, C.; Grasso, G.; D’Urso, L.; Romeo, M.; et al. Inhibition of Aβ Amyloid Growth and Toxicity by Silybins: The Crucial Role of Stereochemistry. ACS Chem. Neurosci. 2017, 8, 1767–1778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Regitz, C.; Dußling, L.M.; Wenzel, U. Amyloid-Beta (Aβ₁₋₄₂)-Induced Paralysis in Caenorhabditis elegans Is Inhibited by the Polyphenol Quercetin through Activation of Protein Degradation Pathways. Mol. Nutr. Food Res. 2014, 58, 1931–1940. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Zhou, Y.; Zhao, L.; Wang, C.; Ma, W.; Ge, G.; Wang, Y.; Ullah, I.; Muhammad, F.; Alwayli, D.; et al. Ferulic Acid Delayed Amyloid β-Induced Pathological Symptoms by Autophagy Pathway via a Fasting-like Effect in Caenorhabditis elegans. Food Chem. Toxicol. 2020, 146, 111808. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yu, X.; Li, C.; Ma, L.; Zhao, Z.; Guan, S.; Wang, L. Caffeic Acid Protects against Aβ Toxicity and Prolongs Lifespan in Caenorhabditis elegans Models. Food Funct. 2021, 12, 1219–1231. [Google Scholar] [CrossRef]
- Wang, Z.; Zheng, P.; Xie, Y.; Chen, X.; Solowij, N.; Green, K.; Chew, Y.L.; Huang, X.-F. Cannabidiol Regulates CB1-PSTAT3 Signaling for Neurite Outgrowth, Prolongs Lifespan, and Improves Health Span in Caenorhabditis elegans of Aβ Pathology Models. FASEB J. 2021, 35, e21537. [Google Scholar] [CrossRef]
- Xin, L.; Yamujala, R.; Wang, Y.; Wang, H.; Wu, W.-H.; Lawton, M.A.; Long, C.; Di, R. Acetylcholineestarase-Inhibiting Alkaloids from Lycoris Radiata Delay Paralysis of Amyloid Beta-Expressing Transgenic C. elegans CL4176. PLoS ONE 2013, 8, e63874. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Zhao, X.; Zhang, Y.; Xie, J.; Zhou, A. 6‴-Feruloylspinosin Alleviated Beta-Amyloid Induced Toxicity by Promoting Mitophagy in Caenorhabditis elegans (GMC101) and PC12 Cells. Sci. Total Environ. 2020, 715, 136953. [Google Scholar] [CrossRef]
- Hao, S.; Li, X.; Han, A.; Yang, Y.; Luo, X.; Fang, G.; Wang, H.; Liu, J.; Wang, S. Hydroxycinnamic Acid from Corncob and Its Structural Analogues Inhibit Aβ40 Fibrillation and Attenuate Aβ40-Induced Cytotoxicity. J. Agric. Food Chem. 2020, 68, 8788–8796. [Google Scholar] [CrossRef]
- Smith, J.V.; Luo, Y. Elevation of Oxidative Free Radicals in Alzheimer’s Disease Models Can Be Attenuated by Ginkgo Biloba Extract EGb 761. J. Alzheimer’s Dis. 2003, 5, 287–300. [Google Scholar] [CrossRef]
- Greaves, L.C.; Turnbull, D.M. Mitochondrial DNA Mutations and Ageing. Biochim. Biophys. Acta 2009, 1790, 1015–1020. [Google Scholar] [CrossRef]
- Yatin, S.M.; Varadarajan, S.; Link, C.D.; Butterfield, D.A. In Vitro and in Vivo Oxidative Stress Associated with Alzheimer’s Amyloid Beta-Peptide (1–42). Neurobiol. Aging 1999, 20, 325–330; discussion 339–342. [Google Scholar] [CrossRef] [PubMed]
- Varadarajan, S.; Yatin, S.; Aksenova, M.; Butterfield, D.A. Review: Alzheimer’s Amyloid Beta-Peptide-Associated Free Radical Oxidative Stress and Neurotoxicity. J. Struct. Biol. 2000, 130, 184–208. [Google Scholar] [CrossRef] [PubMed]
- Levitan, D.; Greenwald, I. Facilitation of Lin-12-Mediated Signalling by Sel-12, a Caenorhabditis elegans S182 Alzheimer’s Disease Gene. Nature 1995, 377, 351–354. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, N.; Shimohama, S.; Oeda, T.; Uemura, K.; Kohno, R.; Kuzuya, A.; Shibasaki, H.; Ishii, N. The Role of the Presenilin-1 Homologue Gene Sel-12 of Caenorhabditis elegans in Apoptotic Activities. J. Biol. Chem. 2003, 278, 12130–12134. [Google Scholar] [CrossRef] [Green Version]
- Levine, R.L.; Stadtman, E.R. Oxidative Modification of Proteins during Aging. Exp. Gerontol 2001, 36, 1495–1502. [Google Scholar] [CrossRef]
- Ved, R.; Saha, S.; Westlund, B.; Perier, C.; Burnam, L.; Sluder, A.; Hoener, M.; Rodrigues, C.M.; Alfonso, A.; Steer, C.; et al. Similar Patterns of Mitochondrial Vulnerability and Rescue Induced by Genetic Modification of Alpha-Synuclein, Parkin, and DJ-1 in Caenorhabditis elegans. J. Biol. Chem. 2005, 280, 42655–42668. [Google Scholar] [CrossRef] [Green Version]
- Drake, J.; Link, C.D.; Butterfield, D.A. Oxidative Stress Precedes Fibrillar Deposition of Alzheimer’s Disease Amyloid Beta-Peptide (1-42) in a Transgenic Caenorhabditis elegans Model. Neurobiol. Aging 2003, 24, 415–420. [Google Scholar] [CrossRef]
- Kim, B.-K.; Park, S.-K. Phosphatidylserine Modulates Response to Oxidative Stress through Hormesis and Increases Lifespan via DAF-16 in Caenorhabditis elegans. Biogerontology 2020, 21, 231–244. [Google Scholar] [CrossRef]
- Apel, K.; Hirt, H. Reactive Oxygen Species: Metabolism, Oxidative Stress, and Signal Transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wu, X.; Huang, L. Correlation between Antioxidant Activities and Phenolic Contents of Radix Angelicae Sinensis (Danggui). Molecules 2009, 14, 5349–5361. [Google Scholar] [CrossRef] [Green Version]
- Fonte, V.; Kipp, D.R.; Yerg, J.; Merin, D.; Forrestal, M.; Wagner, E.; Roberts, C.M.; Link, C.D. Suppression of in Vivo Beta-Amyloid Peptide Toxicity by Overexpression of the HSP-16.2 Small Chaperone Protein. J. Biol. Chem. 2008, 283, 784–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, E.; Bieschke, J.; Perciavalle, R.M.; Kelly, J.W.; Dillin, A. Opposing Activities Protect Against Age-Onset Proteotoxicity. Science 2006, 313, 1604–1610. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Kim, B.-K.; Park, S.-K. Selenocysteine Mimics the Effect of Dietary Restriction on Lifespan via SKN-1 and Retards Age-associated Pathophysiological Changes in Caenorhabditis elegans. Mol. Med. Rep. 2018, 18, 5389–5398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morley, J.F.; Morimoto, R.I. Regulation of Longevity in Caenorhabditis elegans by Heat Shock Factor and Molecular Chaperones. MBoC 2004, 15, 657–664. [Google Scholar] [CrossRef] [Green Version]
- Manaharan, T.; Thirugnanasampandan, R.; Jayakumar, R.; Kanthimathi, M.S.; Ramya, G.; Ramnath, M.G. Purified Essential Oil from Ocimum Sanctum Linn. Triggers the Apoptotic Mechanism in Human Breast Cancer Cells. Pharmacogn. Mag. 2016, 12, S327–S331. [Google Scholar] [CrossRef]
- Cataldo, A.M.; Hamilton, D.J.; Barnett, J.L.; Paskevich, P.A.; Nixon, R.A. Properties of the Endosomal-Lysosomal System in the Human Central Nervous System: Disturbances Mark Most Neurons in Populations at Risk to Degenerate in Alzheimer’s Disease. J. Neurosci. 1996, 16, 186–199. [Google Scholar] [CrossRef]
- Devi, L.; Prabhu, B.M.; Galati, D.F.; Avadhani, N.G.; Anandatheerthavarada, H.K. Accumulation of Amyloid Precursor Protein in the Mitochondrial Import Channels of Human Alzheimer’s Disease Brain Is Associated with Mitochondrial Dysfunction. J. Neurosci. 2006, 26, 9057–9068. [Google Scholar] [CrossRef] [Green Version]
- Virok, D.P.; Simon, D.; Bozsó, Z.; Rajkó, R.; Datki, Z.; Bálint, É.; Szegedi, V.; Janáky, T.; Penke, B.; Fülöp, L. Protein Array Based Interactome Analysis of Amyloid-β Indicates an Inhibition of Protein Translation. J. Proteome Res. 2011, 10, 1538–1547. [Google Scholar] [CrossRef]
- Arduino, D.M.; Esteves, A.R.; Silva, D.F.F.; Martins-Branco, D.; Santos, D.; Pimentel, D.F.G.; Cardoso, S.M. Therapeutic Intervention at Cellular Quality Control Systems in Alzheimer’s and Parkinson’s Diseases. Curr. Pharm. Des. 2011, 17, 3446–3459. [Google Scholar] [CrossRef]
- Prahlad, V.; Morimoto, R.I. Integrating the Stress Response: Lessons for Neurodegenerative Diseases from C. elegans. Trends Cell. Biol. 2009, 19, 52–61. [Google Scholar] [CrossRef] [Green Version]
- Voisine, C.; Pedersen, J.S.; Morimoto, R.I. Chaperone Networks: Tipping the Balance in Protein Folding Diseases. Neurobiol. Dis. 2010, 40, 12–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benedetti, C.; Haynes, C.M.; Yang, Y.; Harding, H.P.; Ron, D. Ubiquitin-like Protein 5 Positively Regulates Chaperone Gene Expression in the Mitochondrial Unfolded Protein Response. Genetics 2006, 174, 229–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haynes, C.M.; Fiorese, C.J.; Lin, Y.-F. Evaluating and Responding to Mitochondrial Dysfunction: The Mitochondrial Unfolded-Protein Response and Beyond. Trends Cell. Biol. 2013, 23, 311–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broadley, S.A.; Hartl, F.U. Mitochondrial Stress Signaling: A Pathway Unfolds. Trends Cell. Biol. 2008, 18, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Kapulkin, V.; Hiester, B.G.; Link, C.D. Compensatory Regulation among ER Chaperones in C. elegans. FEBS Lett. 2005, 579, 3063–3068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, R.C.; Dillin, A. XBP-1 Is a Cell-Nonautonomous Regulator of Stress Resistance and Longevity. Cell 2013, 153, 1435–1447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, K.; Tanaka, N.; Nakamura, N.; Takano, S.; Ohkuma, S. Knockdown of Mitochondrial Heat Shock Protein 70 Promotes Progeria-like Phenotypes in Caenorhabditis elegans. J. Biol. Chem. 2007, 282, 5910–5918. [Google Scholar] [CrossRef] [Green Version]
- Nollen, E.A.A.; Garcia, S.M.; van Haaften, G.; Kim, S.; Chavez, A.; Morimoto, R.I.; Plasterk, R.H.A. Genome-Wide RNA Interference Screen Identifies Previously Undescribed Regulators of Polyglutamine Aggregation. Proc. Natl. Acad. Sci. USA 2004, 101, 6403–6408. [Google Scholar] [CrossRef] [Green Version]
- Rousseau, E.; Dehay, B.; Ben-Haïem, L.; Trottier, Y.; Morange, M.; Bertolotti, A. Targeting Expression of Expanded Polyglutamine Proteins to the Endoplasmic Reticulum or Mitochondria Prevents Their Aggregation. Proc. Natl. Acad. Sci. USA 2004, 101, 9648–9653. [Google Scholar] [CrossRef] [Green Version]
- Kirstein-Miles, J.; Morimoto, R.I. Caenorhabditis elegans as a Model System to Study Intercompartmental Proteostasis: Interrelation of Mitochondrial Function, Longevity, and Neurodegenerative Diseases. Dev. Dyn. 2010, 239, 1529–1538. [Google Scholar] [CrossRef] [Green Version]
- Giampieri, F.; Afrin, S.; Forbes-Hernandez, T.Y.; Gasparrini, M.; Cianciosi, D.; Reboredo-Rodriguez, P.; Varela-Lopez, A.; Quiles, J.L.; Battino, M. Autophagy in Human Health and Disease: Novel Therapeutic Opportunities. Antioxid. Redox Signal. 2019, 30, 577–634. [Google Scholar] [CrossRef] [PubMed]
- Pattingre, S.; Espert, L.; Biard-Piechaczyk, M.; Codogno, P. Regulation of Macroautophagy by MTOR and Beclin 1 Complexes. Biochimie 2008, 90, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.L.; Wu, Y.R.; Song, F.F.; Gan, J.; Huang, L.Y.; Zhang, L.; Huang, C. Role of PCSK9 in the Development of Mouse Periodontitis Before and After Treatment: A Double-Edged Sword. J. Infect. Dis. 2018, 217, 667–680. [Google Scholar] [CrossRef] [PubMed]
- Meléndez, A.; Tallóczy, Z.; Seaman, M.; Eskelinen, E.-L.; Hall, D.H.; Levine, B. Autophagy Genes Are Essential for Dauer Development and Life-Span Extension in C. elegans. Science 2003, 301, 1387–1391. [Google Scholar] [CrossRef] [Green Version]
- Lapierre, L.R.; De Magalhaes Filho, C.D.; McQuary, P.R.; Chu, C.-C.; Visvikis, O.; Chang, J.T.; Gelino, S.; Ong, B.; Davis, A.E.; Irazoqui, J.E.; et al. The TFEB Orthologue HLH-30 Regulates Autophagy and Modulates Longevity in Caenorhabditis elegans. Nat. Commun. 2013, 4, 2267. [Google Scholar] [CrossRef] [Green Version]
- Samuelson, A.V.; Klimczak, R.R.; Thompson, D.B.; Carr, C.E.; Ruvkun, G. Identification of Caenorhabditis elegans Genes Regulating Longevity Using Enhanced RNAi-Sensitive Strains. Cold Spring Harb. Symp. Quant. Biol. 2007, 72, 489–497. [Google Scholar] [CrossRef] [Green Version]
- Decourt, B.; Lahiri, D.K.; Sabbagh, M.N. Targeting Tumor Necrosis Factor Alpha for Alzheimer’s Disease. Curr. Alzheimer Res. 2017, 14, 412–425. [Google Scholar] [CrossRef] [Green Version]
- Chang, R.; Yee, K.L.; Sumbria, R.K. Tumor necrosis factor α Inhibition for Alzheimer’s Disease. J. Cent. Nerv. Syst. Dis. 2017, 9, 1–5. [Google Scholar] [CrossRef]
- Djeddi, A.; Michelet, X.; Culetto, E.; Alberti, A.; Barois, N.; Legouis, R. Induction of Autophagy in ESCRT Mutants Is an Adaptive Response for Cell Survival in C. elegans. J. Cell. Sci. 2012, 125, 685–694. [Google Scholar] [CrossRef] [Green Version]
- Barger, S.W.; Hörster, D.; Furukawa, K.; Goodman, Y.; Krieglstein, J.; Mattson, M.P. Tumor Necrosis Factors Alpha and Beta Protect Neurons against Amyloid Beta-Peptide Toxicity: Evidence for Involvement of a Kappa B-Binding Factor and Attenuation of Peroxide and Ca2+ Accumulation. Proc. Natl. Acad. Sci. USA 1995, 92, 9328–9332. [Google Scholar] [CrossRef] [Green Version]
- Francis, P.; Palmer, A.; Snape, M.; Wilcock, G. The Cholinergic Hypothesis of Alzheimer’s Disease: A Review of Progress. J. Neurol. Neurosurg. Psychiatry 1999, 66, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Schliebs, R. Basal Forebrain Cholinergic Dysfunction in Alzheimer’s Disease--Interrelationship with Beta-Amyloid, Inflammation and Neurotrophin Signaling. Neurochem. Res. 2005, 30, 895–908. [Google Scholar] [CrossRef] [PubMed]
- Combes, D.; Fedon, Y.; Toutant, J.-P.; Arpagaus, M. Multiple Ace Genes Encoding Acetylcholinesterases of Caenorhabditis elegans Have Distinct Tissue Expression. Eur. J. Neurosci. 2003, 18, 497–512. [Google Scholar] [CrossRef] [PubMed]
- Combes, D.; Fedon, Y.; Toutant, J.-P.; Arpagaus, M. Acetylcholinesterase Genes in the Nematode Caenorhabditis elegans. Int. Rev. Cytol. 2001, 209, 207–239. [Google Scholar]
- Culetto, E.; Combes, D.; Fedon, Y.; Roig, A.; Toutant, J.-P.; Arpagaus, M. Structure and Promoter Activity of the 5′ Flanking Region of Ace-1, the Gene Encoding Acetylcholinesterase of Class A in Caenorhabditis elegans. J. Mol. Biol. 1999, 290, 951–966. [Google Scholar] [CrossRef] [Green Version]
- Dahlin, J.L.; Auld, D.S.; Rothenaigner, I.; Haney, S.; Sexton, J.Z.; Nissink, J.W.M.; Walsh, J.; Lee, J.A.; Strelow, J.M.; Willard, F.S.; et al. Nuisance compounds in cellular assays. Cell Chem. Biol. 2012, 28, 356–370. [Google Scholar] [CrossRef]
- Baell, J.B.; Holloway, G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 2010, 53, 2719–2740. [Google Scholar] [CrossRef] [Green Version]
- Baell, J.B.; Walters, M.A. Chemical con artists foil drug discovery. Nature 2014, 513, 481–483. [Google Scholar] [CrossRef]
- Baell, J.B. Feeling Nature’s PAINS: Natural products, natural product drugs, and pan assay interference compounds (PAINS). J. Nat. Prod. 2016, 79, 616–628. [Google Scholar] [CrossRef]
- Escher, B.I.; Henneberger, L.; König, M.; Schlichting, R.; Fischer, F.C. Cytotoxicity burst? Differentiating specific from nonspecific effects in Tox21 in vitro reporter gene assays. Environ. Health Perspect. 2020, 128, 77007. [Google Scholar] [CrossRef]
Strain (Promoter::Transgene) | Transgene Expression | Phenotype |
---|---|---|
CL2006 (Punc-54::SP::Aβ1–42) | Constitutive expression in muscle cells | Progressive, adult-onset paralysis. Intramuscular Aβ deposits. |
CL2122 (Punc-54::SP::Aβ1–42) | Constitutive expression in muscle cells | Slow adult movement. Intramuscular Aβ deposits. |
CL4176 (Pmyo-3::SP::Aβ1–42::long 3′ UTR) | Inducible expression in muscle cells | Temperature-inducible larval paralysis. Intramuscular Aβ deposits. |
CL2355 (Psnb-1::SP:Aβ1–42::long 3′UTR) | Inducible pan-neuronal expression | Memory deficits, abnormal thrashing in liquid, partial sterility. |
Effect on Pathology | Strain | Extract/Essential Oil | Ref. |
---|---|---|---|
Lifespan/survival increase | N2 Bristol wild type | Cassia fistula L. (Indian laburnum) | [98] |
“barquillo”, by-product of (Theobroma cacao L.) cocoa | [125] | ||
Hibiscus sabdariffa L. (roselle) | [119] | ||
Jasonia glutinosa (L.) DC. (rock tea) | [109] | ||
Ilex paraguariensis A.St.-Hil. (yerba mate) | [110] | ||
Leaf of Moringa oleifera Lam. (moringa) | [102] | ||
Fruit of Paullinia cupana Kunth (guarana) | [115] | ||
Silymarin, extract of seeds of Silybum marianum (L.) Gaertn. (milk thistle) | [126] | ||
CL4176 | Ocimum sanctum L. (holy basil) | [117] | |
Aβ-induced paralysis reduction | CL2006 | Leaf of Cocos nucifera L. (Coconut) | [124] |
Cratoxylum formosum ssp. Pruniflorum (Tiew kon) twig | [127] | ||
Glochidion zeylanicum (Gaertn.) A. Juss. | [100] | ||
Ilex paraguariensis A.St.-Hil. (yerba mate) | [110] | ||
Padina gymnospora (Kütz.) Sond. (Funnelweed) | [123] | ||
Fruit of Paullinia cupana Kunth (guarana) | [115] | ||
Sideritis scardica Griseb. (Greek mountain tea) | [108] | ||
Terminalia chebula Retz. | [101] | ||
Punica granatum (pomegranate) | [114] | ||
GMC101 | Root and rhizome of Salvia miltiorrhiza Bunge (Danshen) | [128] | |
CL4176 | Baccharis trimera (Less) DC (Carqueja) | [104] | |
Camelia sinensis (tea) | [129] | ||
Camellia sinensis var. Kitamura (Zijuan Pu’er tea) | [130] | ||
Cassia fistula L. (Indian laburnum) | [98] | ||
Leaf of Cocos nucifera L. (Coconut) | [124] | ||
Curcuma longa (turmeric) | [114] | ||
seed of Coffea arabica L. (decaffeinated Coffee), Decaffeinated | [107] | ||
Glochidion zeylanicum (Gaertn.) A. Juss. | [100] | ||
Hibiscus sabdariffa L. (roselle) | [119] | ||
Jasonia glutinosa (L.) DC. (rock tea) | [109] | ||
Leaf of Moringa oleifera Lam. (moringa) | [102] | ||
Seeds of Mucuna pruriens (L.) DC. (velvet bean) | [98] | ||
Padina gymnospora (Kütz.) Sond. (Funnelweed) | [123] | ||
Fruit of Paullinia cupana Kunth (guarana) | [115] | ||
Fruits of Phyllanthus emblica L. (Indian gooseberry) | [103] | ||
Essential oil of Rosa setate × Rosa rugosa (Kushui rose) | [121] | ||
Sideritis scardica Griseb. (Greek mountain tea) | [108] | ||
Fragaria × ananassa (Strawberry) | [112] | ||
Terminalia chebula Retz. | [101] | ||
Zelkova serrata (Thunb.) Makino (Japanese zelkova) | [122] | ||
Viola cornuta (horned violet) | [120] | ||
Viola x wittrockiana (pansy) | |||
Improvement of Aβ-induced chemotaxis defects | CL2355 | Ginkgo biloba leaf | [99] |
Glochidion zeylanicum (Gaertn.) A. Juss. | [100] | ||
Lignosus rhinocerus (Tiger Milk Mushroom) | [131] | ||
Learning improvement | CL2355 | Acorus tatarinowii (Schott) | [105] |
Serotonin sensitivity increase | CL2355 | Acorus tatarinowii (Schott) | [105] |
Ginkgo biloba leaf | [99] | ||
Rosa setate × Rosa rugosa (Kushui rose) | [121] | ||
Reduction in Aβ deposits | CL2006 | Leaf of Cocos nucifera L. (Coconut) | [124] |
Ginkgo biloba leaf | [99] | ||
Roots of Glycyrrhiza uralensis Fisch.(Chinese liquorice) | [97] | ||
Rosa setate × Rosa rugosa (Kushui rose) | [121] | ||
Sideritis scardica Griseb. (Greek mountain tea) | [108] | ||
CL4176 | Acorus tatarinowii (Schott) oil | [105] | |
Leaf of Cocos nucifera L. (Coconut) | [124] | ||
Padina gymnospora (Kütz.) Sond. (Funnelweed) | [123] | ||
Sideritis scardica Griseb. (Greek mountain tea) | [108] | ||
Fragaria × ananassan (Strawberry) | [112] | ||
CL2355 | Acorus tatarinowii Schott | [105] | |
CL2179 | Ginkgo biloba leaf extract | [99] | |
GMC101 | Root and rhizome of Salvia miltiorrhiza Bunge (Danshen) | [128] | |
Aβ oligomerization reduction | CL2006 | Rosa setate × Rosa rugosa (Kushui rose) | [121] |
Terminalia chebula Retz. | [101] | ||
CL2355 | Ginkgo biloba leaf extract | [99] | |
Increase in synaptic levels of acetyl-choline | N2 Bristol wild type | Thymus vulgaris (Thyme) | [132] |
Reduction in ROS levels | N2 Bristol wild type | Cassia fistula L. (Indian laburnum) | [98] |
Hibiscus sabdariffa L. (roselle) | [119] | ||
Hydrolyzed cocoa by-product | [125] | ||
Ilex paraguariensis A.St.-Hil. (yerba mate) | [110] | ||
Leaf of Moringa oleifera Lam. (moringa) | [102] | ||
Fragaria × ananassa (Strawberry) | [112] | ||
CL2006 | Cratoxylum formosum ssp. Pruniflorum (Tiewkon) twig | [127] | |
Leaf of Ginkgo biloba L. | [99] | ||
Padina gymnospora (Kütz.) Sond. (Funnelweed) | [123] | ||
Fruit of Paullinia cupana Kunth (guarana) | [115] | ||
BA17 wild type | Baccharis trimera (Less) DC (Carqueja) | [104] | |
GMC101 | Root and rhizome of Salvia miltiorrhiza Bunge (Danshen) | [128] | |
Reduction in chemically induced ROS | N2 Bristol wild type | Fruit of Paullinia cupana Kunth (guarana) | [115] |
Resistance to induced oxidative stress improvement | N2 Bristol wild type | Cassia fistula L. (Indian laburnum) | [98] |
Hydrolyzed cocoa by-product | [127] | ||
Ilex paraguariensis A.St.-Hil. (yerba mate) | [110] | ||
Jasonia glutinosa (L.) DC. (rock tea) | [109] | ||
Fruit of Paullinia cupana Kunth (guarana) | [115] | ||
Zelkova serrata (Thunb.) Makino (Japanese zelkova) | [122] | ||
Viola cornuta (horned violet) | [120] | ||
Viola x wittrockiana (pansy) | |||
Leaf of Ginkgo biloba L. | [99] | ||
CL4176 | Curcuma longa (turmeric) | [114] | |
Phyllanthus emblica (Indian gooseberry) | |||
Fruits of Punica granatum L. (pomegranate) | |||
BA17 wild type | Baccharis trimera (Less) DC (Carqueja) | [104] | |
Resistance to thermal stress improvement | N2 Bristol wild type | Leaf of Moringa oleifera Lam. (moringa) | [102] |
Fruit of Paullinia cupana Kunth (guarana) | [115] | ||
Zelkova serrata (Thunb.) Makino (Japanese zelkova) | [122] | ||
Improvement in healthspan parameters | N2 Bristol wild type | Hibiscus sabdariffa L. (roselle) | [119] |
Leaf of Moringa oleifera Lam. (moringa) | [102] | ||
Fruit of Paullinia cupana Kunth (guarana) | [115] |
Effect on Pathology | Strain | Compound | Source | Ref. |
---|---|---|---|---|
Lifespan/survival increase | N2 Bristol wild type | 2,3-dehydrosilybin A/B | Silymarin, extract of seeds of Silybum marianum (L.) Gaertn. (milk thistle) | [126] |
20-galloyl-dehydrosilybin A/B | ||||
3,7-dimethyl- dehydrosilybin A/B | ||||
7-methyl- dehydrosilybin A/B | ||||
Isosilybin A | ||||
Silybin A/B | ||||
Silychristin A/B | ||||
Silydianin A/B | ||||
Caffeic acid | Various | [146] | ||
Caffeine | Coffea arabica L. (Coffee); Camelia sinensis (L.) Kuntze (tea) | [110] | ||
Hydroxycitric acid | Hibiscus sabdariffa L. (roselle) | [119] | ||
Peptides | Hydrolyzed “barquillo”, by-product of (Theobroma cacao L.) cocoa | [125] | ||
Sesamin | Seeds of Sesamum indicum (sesame) | [134] | ||
Withanolide A | Root of Withania somnifera (L.) Dunal (ashwagandha) | [143] | ||
CL2006 | Ferulic acid | Various | [140] | |
Morin | Various | |||
Quercetin | Various | |||
Gossypol | Gossypium arboreum L. (Cotton plant) | |||
Oleuropein aglycone | Extra virgin oil form Olea europaea L. fruit (olive oil) | [135] | ||
CL2355 | Cannabidiol | Cannabis sativa L. (marijuana) | [148] | |
CL4176 | Caffeic acid | Various | [147] | |
Eugenol | Ocimum sanctum L. (holy basil) | [117] | ||
Haemanthidine | Lycoris radiata (L’Hér.) Herb. (red spider lily) | [149] | ||
GMC101 | 6‴-feruloylspinosin | Seeds of Ziziphus jujuba Mill. (Sour Jujube) | [150] | |
Aβ-induced paralysis reduction | CL2006 | Cyclotides | Clitoria ternatea L. (butterfly pea) | [141] |
Quercetin | Various | [144,145] | ||
Oleuropein aglycone | Extra virgin oil form Olea europaea L. fruit (olive oil) | [135] | ||
Otophylloside B | Cynanchum otophyllum L. (dog-strangling vine) | [138] | ||
Resveratrol | Red wine | [142] | ||
Betalains | Rhizome of Beta vulgaris L. (Red-beet) | [139] | ||
CL4176 | Withanolide A | Root of Withania somnifera (L.) Dunal (ashwagandha) | [143] | |
Mixture of (+)-catechins, caffeine and procyanidins | Various | [130] | ||
Peptides | Hydrolyzed “barquillo”, by-product of (Theobroma cacao L.) cocoa | [125] | ||
2,3-dehydrosilybin A | Silymarin, extract of seeds of Silybum marianum (L.) Gaertn. (milk thistle) | [126] | ||
2,3-dehydrosilybin B | [126] | |||
Aglycon of glycyrrhizic acid | Roots of Glycyrrhiza uralensis Fisch.(Chinese liquorice) | [97] | ||
Glycyrrhetinic acid | ||||
Glycyrrhizic acid | ||||
Isoliquiritigenin | ||||
Liquiritigenin | ||||
Caffeic acid | Various | [147] | ||
7-hydroxycalamenene | Essential oil of Zelkova serrata (Thunb.) Makino (Japanese zelkova) | [122] | ||
Caffeine | Coffea arabica L. (Coffee); Camelia sinensis (L.) Kuntze (tea) | [107] | ||
Cyclotides | Clitoria ternatea L. (butterfly pea) | [141] | ||
Ferulic acid | Various | [146] | ||
Ginkgolide A | Leaf of Ginkgo biloba L. | [99] | ||
Ginkgolide J | ||||
Haemanthidine | Lycoris radiata (L’Hér.) Herb. (red spider lily) | [149] | ||
Nardochinins A | Underground parts of Nardostachys chinensis Batal. (Chinese Nardostachys) | [133] | ||
Nardochinins B | ||||
Nardochinins D | ||||
Hydroxycitric acid | Hibiscus sabdariffa L. (roselle) | [119] | ||
Imbricatolic acid | Seeds of Platycladus orientalis (L.) Franco (Chinese arborvitae) | [103] | ||
Isocupressic acid | ||||
Magnolol | Magnolia spp. | [136] | ||
Nardochinin B | Underground parts of Nardostachys chinensis Batal. (Chinese Nardostachys) | [133] | ||
Nardochinins A | ||||
Nardochinins C | ||||
Nardochinins D | ||||
Nubiol | Salvia castanea Diels | [137] | ||
Salcastanins A-F | ||||
Oleuropein aglycone | Extra virgin oil form Olea europaea L. fruit (olive oil) | [135] | ||
Otophylloside B | Cynanchum otophyllum L. (dog-strangling vine) | [138] | ||
Sesamin | Seeds of Sesamum indicum (sesame) | [134] | ||
GMC101 | 2,3-dehydrosilybin A/B | Silymarin, extract of seeds of Silybum marianum (L.) Gaertn. (milk thistle) | [126] | |
6‴-feruloylspinosin | Seeds of Ziziphus jujuba Mill. (Sour Jujube) | [150] | ||
Improvements in Aβ-induced chemotaxis defects | CL2355 | Caffeic acid | Various | [147] |
Cannabidiol | Cannabis sativa L. (marijuana) | [148] | ||
Cyclotides | Clitoria ternatea L. (butterfly pea) | [141] | ||
Otophylloside B | Cynanchum otophyllum L. (dog-strangling vine) | [138] | ||
Sesamin | Seeds of Sesamum indicum (sesame) | [134] | ||
Sesamolin | ||||
GMC101 | 6‴-feruloylspinosin | Seeds of Ziziphus jujuba Mill. (Sour Jujube) | [150] | |
Learning improvements | CL241 | Magnolol | Magnolia sp. | [136] |
GMC101 | 6‴-feruloylspinosin | Seeds of Ziziphus jujuba Mill. (Sour Jujube) | [150] | |
Serotonin sensitivity increase | CL2355 | Ferulic acid | Various | [146] |
Geraniol | Essential oil of Rosa setate × Rosa rugosa (Kushui rose) | [121] | ||
Ginkgolide A | Leaf of Ginkgo biloba L. | [99] | ||
Reduction in Aβ deposits | CL2006 | Aglycon of glycyrrhizic acid | Roots of Glycyrrhiza uralensis Fisch.(Chinese liquorice) | [97] |
Glycyrrhetinic acid | ||||
Glycyrrhizic acid | ||||
Isoliquiritigenin | ||||
Cyclotides | Clitoria ternatea L. (butterfly pea) | [141] | ||
Ferulic acid | Various | [146] | ||
Oleuropein aglycone | Extra virgin oil form Olea europaea L. fruit (olive oil) | [135] | ||
α-bisabolol | Padina gymnospora (Kütz.) Sond. (Funnelweed) | [123] | ||
CL2331 | 2,3-dehydrosilybin A/B | Silymarin, extract of seeds of Silybum marianum (L.) Gaertn. (milk thistle) | [126] | |
CL4176 | 2,3-dehydrosilybin A | [144] | ||
2,3-dehydrosilybin B | ||||
Silybin B | ||||
α-bisabolol | Padina gymnospora (Kütz.) Sond. (Funnelweed) | [123] | ||
Aβ oligomerization reduction | CL2006 | Quercetin | Various | [146] |
Oleuropein aglycone | Extra virgin oil form Olea europaea L. fruit (olive oil) | [135] | ||
CL4176 | Ferulic acid | Various | [146] | |
Ginkgolide A | Leaf of Ginkgo biloba L. | [99] | ||
Ginkgolide J | ||||
Hydroxycinnamic acid | Various | [151] | ||
Sesamin | Seeds of Sesamum indicum (sesame) | [134] | ||
GMC101 | 2,3-dehydrosilybin A/B | Silymarin, extract of seeds of Silybum marianum (L.) Gaertn. (milk thistle) | [126] | |
Increase in synaptic levels of acetyl-choline | N2 Bristol wild type | 2,3-dehydrosilybin A/B | Silymarin, extract of seeds of Silybum marianum (L.) Gaertn. (milk thistle) | [126] |
Gamma-terpinene | Essential oil of Thymus vulgaris L. (thyme) | [132] | ||
para-Cymene | ||||
Thymol | ||||
Withanolide A | Root of Withania somnifera (L.) Dunal (ashwagandha) | [143] | ||
Reduction in ROS levels | N2 Bristol wild type | 2,3-dehydrosilybin A/B | Silymarin, extract of seeds of Silybum marianum (L.) Gaertn. (milk thistle) | [126] |
Caffeine | Coffea arabica L. (Coffee); Camelia sinensis (L.) Kuntze (tea) | [110] | ||
Hydroxycitric acid | Hibiscus sabdariffa L. (roselle) | [119] | ||
Withanolide A | Root of Withania somnifera (L.) Dunal (ashwagandha) | [143] | ||
CL2006 | Caffeine | Coffee, tea | [110] | |
Cyclotides | Clitoria ternatea L. (Butterfly pea) | [141] | ||
Kaempherol | Various | [106] | ||
Ascorbate | Various | |||
Otophylloside B | Cynanchum otophyllum L. (dog-strangling vine) | [138] | ||
α-bisabolol | Padina gymnospora (Kütz.) Sond. (Funnelweed) | [123] | ||
CL4176 | 7-hydroxycalamenene | Essential oil of Zelkova serrata (Thunb.) Makino (Japanese zelkova) | [122] | |
Cyclotides | Clitoria ternatea L. (Butterfly pea) | [141] | ||
Ginkgolide A | Leaf of Ginkgo biloba L. | [152] | ||
α-bisabolol | Padina gymnospora (Kütz.) Sond. (Funnelweed) | [123] | ||
Reduction in chemically induced ROS | Caffeic acid | Various | [147] | |
Withanolide A | Root of Withania somnifera (L.) Dunal (ashwagandha) | [143] | ||
Resistance to induced oxidative stress increase | N2 Bristol wild type | 2,3-dehydrosilybin A/B | Silymarin, extract of seeds of Silybum marianum (L.) Gaertn. (milk thistle) | [126] |
Caffeine | Coffea arabica L. (Coffee); Camelia sinensis (L.) Kuntze (tea) | [110] | ||
Withanolide A | Root of Withania somnifera (L.) Dunal (ashwagandha) | [143] | ||
Oxidative damage accumulation reduction | CL2331 | 2,3-dehydrosilybin A/B | Silymarin, extract of seeds of Silybum marianum (L.) Gaertn. (milk thistle) | [126] |
GMC101 | ||||
Resistance to thermal stress increase | N2 Bristol wild type | Caffeic acid | Various | [147] |
Withanolide A | Root of Withania somnifera (L.) Dunal (ashwagandha) | [143] | ||
Improvements in healthspan parameters | N2 Bristol wild type | 2,3-dehydrosilybin A/B | Silymarin, extract of seeds of Silybum marianum (L.) Gaertn. (milk thistle) | [126] |
Withanolide A | Root of Withania somnifera (L.) Dunal (ashwagandha) | [143] | ||
CL2355 | Cannabidiol | Cannabis sativa L. (marijuana) | [148] |
Protein | Effect | Strain | Extract/Compound | iRNA Effects on AD Models Treated with the Extract/Compound | Ref. |
---|---|---|---|---|---|
SOD-3 | Up-regulated levels | CL1553 | Phosphatidylserine | [159] | |
Caffeic acid | [147] | ||||
Withanolide A | [143] | ||||
Guarana extract | [115] | ||||
Strawberry extracts | [112] | ||||
Carqueja extract | [104] | ||||
Up-regulated gene expression | N2 Bristol | Withanolide A | [143] | ||
CL4176 | Caffeic acid | [147] | |||
Cranberry extract | [116] | ||||
Down-regulated levels | Indian laburnum extract | [98] | |||
GST-4 | Up-regulated levels | CL2166 | Withanolide A | [143] | |
Caffeic acid | [147] | ||||
Rose essential oil | [123] | ||||
Guarana extract | [115] | ||||
Carqueja extract | [106] | ||||
Tiew kon extract | [127] | ||||
Up-regulated gene expression | Caffeic acid | [147] | |||
Cranberry extract | [116] | ||||
Down-regulated levels | CL2166 | Indian laburnum extract | [98] | ||
No effect on gene expression | CL2006 | Otophylloside B | [138] | ||
HSP-16.2 | Up-regulated levels | TJ375 or CL2070 | Phosphatidylserine | [159] | |
Guarana extract | [115] | ||||
Carqueja extract | [106] | ||||
Indian laburnum | [98] | ||||
T. chebula extract | [101] | ||||
Up-regulated gene expression | N2 | Withanolide A | [143] | ||
CL2006 | Yerba mate extract | [110] | |||
Cranberry extract | [116] | ||||
CL2006 | Caffeic acid | [147] | |||
CL4176 | Caffeic acid | [147] | |||
Cranberry extract | [116] | ||||
SKN-1 | Translocation to the nucleus | LD1 and LG333 | Strawberry extract | Aβ-induced paralysis was partially reduced by iRNAs | [112] |
Carqueja extract | [104] | ||||
Kushui rose essential oil | [121] | ||||
Unknown | Kushui rose essential oil | No consequences of iRNAs treatment in CL4176 and CL2355 | [121] | ||
Proantocyanide-rich extract of cranberry | No consequences of iRNAs treatment in CL2006 | [116] | |||
Coffee | Aβ-induced paralysis was partially reduced by iRNAs | [107] | |||
Guarana extract | [115] | ||||
Tiew kon extract | [127] | ||||
DAF-16 | Translocation to the nucleus | TJ356 | Strawberry extract | Aβ-induced paralysis was partially reduced by iRNAs | [112] |
roselle extract | [119] | ||||
T. chebula extract | [101] | ||||
Moringa extract | [102] | ||||
Selenocysteine | [166] | ||||
Caffeic acid | [147] | ||||
Indian laburnum extract | [98] | ||||
Hydroxycitric acid | [119] | ||||
No effect on translocation to nucleus | TJ356 | Withanolide A | [143] | ||
Kushui rose essential oil | [121] | ||||
Kushui rose essential oil. | No consequences of iRNAs treatment in CL4176 and CL2355 strains | [121] | |||
Proantocyanide-rich extract of cranberry | No consequences of iRNAs treatment in CL2006 | [116] | |||
Up-regulated gene expression | CL4176 | Caffeic acid | [147] | ||
N2 Bristol | Withanolide A | [143] | |||
No effect on gene expression | CL4176 | Mixture of (+)-catechins, caffeine and procyanidins | [130] | ||
Unknown | Tiew kon extract | Aβ-induced paralysis were partially reduced by iRNAs | [127] | ||
Guarana extract | [115] | ||||
Yerba mate extract | [110] | ||||
Caffeine | |||||
HSF-1 | Unknown | CL4176 | T. chebula extracts | Aβ-induced paralysis was partially reduced by iRNAs | [101] |
CL2006 | Proantocyanide-rich extract of cranberry | [116] | |||
Yerba mate extract | No consequences of iRNAs treatment in CL4176 and CL2355 strains | [110] | |||
Caffeine | [110] | ||||
Up-regulated gene expression | CL4176 | Caffeic acid | [147] | ||
N2 Bristol | Withanolide A | [143] | |||
No effect on gene expression | CL4176 | Mixture of (+)-catechins, caffeine and procyanidins | [130] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro-Hortal, M.D.; Romero-Márquez, J.M.; Osta, S.; Jiménez-Trigo, V.; Muñoz-Ollero, P.; Varela-López, A. Natural Bioactive Products and Alzheimer’s Disease Pathology: Lessons from Caenorhabditis elegans Transgenic Models. Diseases 2022, 10, 28. https://doi.org/10.3390/diseases10020028
Navarro-Hortal MD, Romero-Márquez JM, Osta S, Jiménez-Trigo V, Muñoz-Ollero P, Varela-López A. Natural Bioactive Products and Alzheimer’s Disease Pathology: Lessons from Caenorhabditis elegans Transgenic Models. Diseases. 2022; 10(2):28. https://doi.org/10.3390/diseases10020028
Chicago/Turabian StyleNavarro-Hortal, María D., Jose M. Romero-Márquez, Safa Osta, Victoria Jiménez-Trigo, Pedro Muñoz-Ollero, and Alfonso Varela-López. 2022. "Natural Bioactive Products and Alzheimer’s Disease Pathology: Lessons from Caenorhabditis elegans Transgenic Models" Diseases 10, no. 2: 28. https://doi.org/10.3390/diseases10020028
APA StyleNavarro-Hortal, M. D., Romero-Márquez, J. M., Osta, S., Jiménez-Trigo, V., Muñoz-Ollero, P., & Varela-López, A. (2022). Natural Bioactive Products and Alzheimer’s Disease Pathology: Lessons from Caenorhabditis elegans Transgenic Models. Diseases, 10(2), 28. https://doi.org/10.3390/diseases10020028