Ultra-Low-Voltage Inverter-Based Operational Transconductance Amplifiers with Voltage Gain Enhancement by Improved Composite Transistors
Abstract
:1. Introduction
2. Composite Transistor with an Improved Forward-Body-Bias
3. Inverter-Based OTAs with an Improved Forward Body-Bias
4. Simulation Results
4.1. Open-Loop Analysis
4.2. Unity-Gain Buffer Analysis
4.3. Monte Carlo Simulation Results
4.4. Performance Comparison
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CMOS | Complementary Metal-Oxide-Semiconductor |
CMRR | Common-Mode Rejection Ratio |
DP | Differential Pair |
FoM | Figure of Merit |
GBW | Gain-Bandwidth-Product |
NMOS | N-type Metal-Oxide-Semiconductor |
OTA | Operational Transconductance Amplifier |
PMOS | P-type Metal-Oxide-Semiconductor |
PSRR | Power Supply Rejection Ratio |
THD | Total Harmonic Distortion |
UICM | Unified Current Control Model |
ULP | Ultra-Low-Power |
ULV | Ultra-Low-Voltage |
References
- Kim, S.; Vyas, R.; Bito, J.; Niotaki, K.; Collado, A.; Georgiadis, A.; Tentzeris, M.M. Ambient RF Energy-Harvesting Technologies for Self-Sustainable Standalone Wireless Sensor Platforms. Proc. IEEE 2014, 102, 1649–1666. [Google Scholar] [CrossRef]
- Aiello, O.; Crovetti, P.; Alioto, M. A Sub-Leakage pW-Power Hz-Range Relaxation Oscillator Operating with 0.3 V–1.8 V Unregulated Supply. In Proceedings of the IEEE 2018 Symposia on VLSI Circuits (VLSI 2018), Honolulu, HI, USA, 18–22 June 2018; pp. 119–120. [Google Scholar]
- Aiello, O.; Crovetti, P.; Lin, L.; Alioto, M. A pW-Power Hz-Range Oscillator Operating With a 0.3–1.8-V Unregulated Supply. IEEE J. Solid-State Circuits 2019, 54, 1487–1496. [Google Scholar] [CrossRef]
- Bertacchini, A.; Larcher, L.; Maini, M.; Vincetti, L.; Scorcioni, S. Reconfigurable RF Energy Harvester with Customized Differential PCB Antenna. J. Low Power Electron. Appl. 2015, 5, 257–273. [Google Scholar] [CrossRef] [Green Version]
- Aiello, O.; Crovetti, P.; Alioto, M. Fully Synthesizable Low-Area Digital-to-Analog Converter with Graceful Degradation and Dynamic Power-Resolution Scaling. IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 66, 2865–2875. [Google Scholar] [CrossRef]
- Aiello, O.; Crovetti, P.; Alioto, M. Fully Synthesizable Low-Area Analogue-to-Digital Converters with Minimal Design Effort Based on the Dyadic Digital Pulse Modulation. IEEE Access 2020, 8, 70890–70899. [Google Scholar] [CrossRef]
- Richelli, A.; Colalongo, L.; Kovacs-Vajna, Z.; Calvetti, G.; Ferrari, D.; Finanzini, M.; Pinetti, S.; Prevosti, E.; Savoldelli, J.; Scarlassara, S. A Survey of Low Voltage and Low Power Amplifier Topologies. J. Low Power Electron. Appl. 2018, 8, 22. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, S.; Tsividis, Y.; Kinget, P. 0.5-V analog circuit techniques and their application in OTA and filter design. IEEE J. Solid-State Circuits 2005, 40, 2373–2387. [Google Scholar] [CrossRef]
- Ferreira, L.H.; Sonkusale, S.R. A 60-dB gain OTA operating at 0.25-V power supply in 130-nm digital CMOS process. IEEE Trans. Circuits Syst. I Regul. Pap. 2014, 61, 1609–1617. [Google Scholar] [CrossRef]
- Abdelfattah, O.; Roberts, G.W.; Shih, I.; Shih, Y.C. An ultra-low-voltage CMOS process-insensitive self-biased OTA with rail-to-rail input range. IEEE Trans. Circuits Syst. I Regul. Pap. 2015, 62, 2380–2390. [Google Scholar] [CrossRef]
- Veldandi, H.; Shaik, R.A. A 0.3-v pseudo-differential bulk-input ota for low-frequency applications. Circuits Syst. Signal Process. 2018, 37, 5199–5221. [Google Scholar] [CrossRef]
- Veeravalli, A.; Sánchez-Sinencio, E.; Silva-Martínez, J. Transconductance amplifier structures with very small transconductances: A comparative design approach. IEEE J. Solid-State Circuits 2002, 37, 770–775. [Google Scholar] [CrossRef] [Green Version]
- Nauta, B. A CMOS transconductance-C filter technique for very high frequencies. IEEE J. Solid-State Circuits 1992, 27, 142–153. [Google Scholar] [CrossRef] [Green Version]
- Barthelemy, H.; Meillere, S.; Gaubert, J.; Dehaese, N.; Bourdel, S. OTA based on CMOS inverters and application in the design of tunable bandpass filter. Analog Integr. Circuits Signal Process. 2008, 57, 169–178. [Google Scholar] [CrossRef]
- Vlassis, S. 0.5 V CMOS inverter-based tunable transconductor. Analog Integr. Circuits Signal Process. 2012, 72, 289–292. [Google Scholar] [CrossRef]
- Vieru, R.G.; Ghinea, R. An ultra low voltage sigma delta modulator with inverter based scalable amplifier. In Proceedings of the 2012 10th International Symposium on Electronics and Telecommunications, Timisoara, Romania, 15–16 November 2012; pp. 3–6. [Google Scholar]
- Khateb, F.; Kulej, T.; Vlassis, S. Extremely low-voltage bulk-driven tunable transconductor. Circuits Syst. Signal Process. 2017, 36, 511–524. [Google Scholar] [CrossRef]
- Baghtash, H.F. A 0.4 V, body-driven, fully differential, tail-less OTA based on current push-pull. Microelectron. J. 2020, 99, 104768. [Google Scholar] [CrossRef]
- Galup-Montoro, C.; Schneider, M.C.; Loss, I.J. Series-parallel association of FET’s for high gain and high frequency applications. IEEE J. Solid-State Circuits 1994, 29, 1094–1101. [Google Scholar] [CrossRef]
- Braga, R.A.; Ferreira, L.H.; Coletta, G.D.; Dutra, O.O. A 0.25-V calibration-less inverter-based ota for low-frequency gm-c applications. Microelectron. J. 2019, 83, 62–72. [Google Scholar] [CrossRef]
- Rodovalho, L.H. Push–pull based operational transconductor amplifier topologies for ultra low voltage supplies. Analog. Integr. Circuits Signal Process. 2020, 1–14. [Google Scholar] [CrossRef]
- Niranjan, V.; Kumar, A.; Jain, S.B. Composite transistor cell using dynamic body bias for high gain and low-voltage applications. J. Circuits Syst. Comput. 2014, 23, 1450108. [Google Scholar] [CrossRef]
- Schneider, M.C.; Galup-Montoro, C. CMOS Analog Design Using All-Region MOSFET Modeling; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Clerc, S. The Fourth Terminal: Benefits of Body-Biasing Techniques for FDSOI Circuits and Systems; Springer Nature Switzerland AG: Cham, Switzerland, 2020. [Google Scholar]
- Toledo, P.; Aiello, O.; Crovetti, P. A 300mV-Supply Standard-Cell-Based OTA with Digital PWM Offset Calibration. In Proceedings of the IEEE Nordic Conference of Circuits and Systems, Helsinki, Finland, 29–30 October 2019. [Google Scholar]
- Lv, L.; Zhou, X.; Qiao, Z.; Li, Q. Inverter-Based Subthreshold Amplifier Techniques and Their Application in 0.3-V Delta Sigma Modulators. IEEE J. Solid-State Circuits 2019, 54, 1436–1445. [Google Scholar] [CrossRef]
- Manfredini, G.; Catania, A.; Benvenuti, L.; Cicalini, M.; Piotto, M.; Bruschi, P. Ultra-Low-Voltage Inverter-Based Amplifier with Novel Common-Mode Stabilization Loop. Electronics 2020, 9, 1019. [Google Scholar] [CrossRef]
GBW [Hz] | IDD [nA] | FoM [V−1] | AV [dB] | VOS [mV] | Power [pW] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Process | OTA-A | 947 | 277 | 2.1 | 0.6 | 447 | 1 | 39 | 0.1 | 0.2 | 0.3 | 635 | 186 |
OTA-B | 770 | 226 | 1.7 | 0.5 | 443 | 2 | 51 | 0.4 | 0.2 | 0.4 | 520 | 152 | |
Mismatch | OTA-A | 905 | 38 | 2.0 | 0.1 | 447 | 12 | 39 | 0.1 | 0.1 | 2.1 | 607 | 18 |
OTA-B | 744 | 26 | 1.8 | 0.0 | 443 | 11 | 51 | 0.5 | 0.1 | 1.8 | 503 | 12 | |
All | OTA-A | 945 | 289 | 2.1 | 0.6 | 448 | 13 | 39 | 0.2 | 0.1 | 2.1 | 633 | 193 |
OTA-B | 778 | 778 | 1.8 | 0.5 | 443 | 11 | 50 | 0.7 | 0.2 | 1.8 | 527 | 154 |
GBW [Hz] | IDD [nA] | FoM [V−1] | AV [dB] | VOS [mV] | Power [pW] | ||
---|---|---|---|---|---|---|---|
TT | OTA-A | 904 | 2.0 | 447 | 39 | −0.2 | 607 |
OTA-B | 743 | 1.7 | 443 | 51 | −0.1 | 503 | |
SS | OTA-A | 326 | 0.7 | 449 | 40 | 0.0 | 218 |
OTA-B | 263 | 0.6 | 443 | 50 | 0.0 | 178 | |
SF | OTA-A | 941 | 2.1 | 451 | 39 | −1.7 | 626 |
OTA-B | 666 | 1.4 | 464 | 50 | −4.3 | 430 | |
FS | OTA-A | 899 | 2.0 | 448 | 39 | 0.8 | 603 |
OTA-B | 735 | 1.6 | 448 | 48 | 1.1 | 492 | |
FF | OTA-A | 2423 | 5.4 | 448 | 39 | −0.3 | 1624 |
OTA-B | 1971 | 4.4 | 444 | 51 | −0.2 | 1330 |
[8] + | [26] * | [20] + | [25] * | [27] * | [21] * | [8] + | [9] + | [10] + | [11] * | [18] * | OTA-A * | OTA-B * | Unit | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Technology | 180 | 130 | 130 | 180 | 180 | 180 | 180 | 130 | 65 | 65 | 180 | 180 | 180 | nm |
Input | GD | GD | GD | GD | GD | GD | BD | BD | BD | BD | BD | GD | GD | - |
Output | FD | FD | FD | SE | FD | FD | FD | SE | FD | SE | FD | SE | SE | - |
N. of Stages | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 2 | 3 | 2 | 2 | 1 | 1 | - |
Die Area | 17,000 | - | 52,000 | 1426 | 800 | - | 26,000 | 83,000 | 5000 | 3000 | 5000 | 472 | 727 | μm² |
VDD | 0.5 | 0.3 | 0.25 | 0.3 | 0.3 | 0.5 | 0.5 | 0.25 | 0.35 | 0.3 | 0.4 | 0.3 | 0.3 | V |
Power | 75,000 | 1800 | 55 | 2 | 10.5 | 140 | 17,000 | 18 | 17,000 | 51 | 300 | 0.60 | 0.50 | nW |
Voltage Gain | 62 | 50 | 25 | 35 | 23 | 64 | 52 | 60 | 43 | 60 | 81 | 39 | 51 | dB |
V. Gain/ N. Stages | 31 | 25 | 25 | 18 | 23 | 64 | 26 | 30 | 14 | 30 | 41 | 39 | 51 | dB |
CMRR | 75 | - | 43 | - | - | 54 | 78 | - | 46 | 126 | 126 | 30 | 37 | dB |
PSRR | 81 | - | 47 | - | - | 51 | 76 | - | 35 | 90 | 79 | 33 | 41 | dB |
Offset Voltage | 6.0 | - | - | - | - | - | 9.0 | 8.4 | - | 7.3 | - | 6.3 | 5.4 | mV |
Input R. Noise | 225 | 38 | 139 | - | - | - | 225 | 3300 | - | 2820 | 213 | 784 | 809 | nV/ |
THD | 1 | - | 0.1 | 3 | - | - | 1 | 0.2 | 0.3 | - | - | 1 | 1 | % |
Input Range | 712 | - | 19 | 100 | - | - | 400 | 150 | - | - | - | 70 | 35 | mV |
GBW | 10,000 | 9100 | 7.23 | 0.89 | 8.0 | 100 | 3600 | 1.88 | 3600 | 70 | 280.4 | 0.90 | 0.74 | kHz |
Phase Margin | 60 | 76 | 90 | 76 | 86 | 90 | 53 | 56 | 53 | 59 | 90 | 90 | ° | |
CL | 20 | 2 | 30 | 80 | 10 | 10 | 20 | 15 | 3 | 5 | 5 | 10 | 10 | pF |
FoM | 133 | 303 | 143 | 1020 | 229 | 370 | 22 | 29 | 22 | 20 | 187 | 447 | 443 | V−1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodovalho, L.H.; Aiello, O.; Rodrigues, C.R. Ultra-Low-Voltage Inverter-Based Operational Transconductance Amplifiers with Voltage Gain Enhancement by Improved Composite Transistors. Electronics 2020, 9, 1410. https://doi.org/10.3390/electronics9091410
Rodovalho LH, Aiello O, Rodrigues CR. Ultra-Low-Voltage Inverter-Based Operational Transconductance Amplifiers with Voltage Gain Enhancement by Improved Composite Transistors. Electronics. 2020; 9(9):1410. https://doi.org/10.3390/electronics9091410
Chicago/Turabian StyleRodovalho, Luis Henrique, Orazio Aiello, and Cesar Ramos Rodrigues. 2020. "Ultra-Low-Voltage Inverter-Based Operational Transconductance Amplifiers with Voltage Gain Enhancement by Improved Composite Transistors" Electronics 9, no. 9: 1410. https://doi.org/10.3390/electronics9091410
APA StyleRodovalho, L. H., Aiello, O., & Rodrigues, C. R. (2020). Ultra-Low-Voltage Inverter-Based Operational Transconductance Amplifiers with Voltage Gain Enhancement by Improved Composite Transistors. Electronics, 9(9), 1410. https://doi.org/10.3390/electronics9091410