Battery Energy Management of Autonomous Electric Vehicles Using Computationally Inexpensive Model Predictive Control
Abstract
1. Introduction
1.1. Literature Review
1.2. Research Contribution
1.3. Paper Organization
2. Vehicle and Battery Dynamics
2.1. Vehicle Longitudinal Dynamics
2.2. Battery Dynamics
2.2.1. Continuous-Time SOC Dynamics
2.2.2. Motor Dynamics
2.2.3. Discrete-Time Battery Dynamics
2.3. Discrete-Time Model for Implementation
3. Optimal Control Problem Formulation
4. Practical Considerations for Real-Time Implementation of MPC
4.1. Dynamic Programming
4.2. Model Predictive Control
4.2.1. Quadratic Cost Simplification
4.2.2. Real-Time Computational Feasibility
5. Strategies for Computational Load Reduction in MPC
5.1. Sampling-Time Adjustment
5.2. Warmstarting
5.3. Move Blocking
6. Simulation Results
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wadud, Z.; MacKenzie, D.; Leiby, P. Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles. Transp. Res. Part A Policy Pract. 2016, 86, 1–18. [Google Scholar] [CrossRef]
- Masood, K.; Molfino, R.; Zoppi, M. Simulated Sensor Based Strategies for Obstacle Avoidance Using Velocity Profiling for Autonomous Vehicle FURBOT. Electronics 2020, 9, 883. [Google Scholar] [CrossRef]
- Li, N.; Oyler, D.W.; Zhang, M.; Yildiz, Y.; Kolmanovsky, I.; Girard, A.R. Game theoretic modeling of driver and vehicle interactions for verification and validation of autonomous vehicle control systems. IEEE Trans. Control Syst. Technol. 2017, 26, 1782–1797. [Google Scholar] [CrossRef]
- Han, K.; Li, N.; Kolmanovsky, I.; Girard, A.; Wang, Y.; Filev, D.; Dai, E. Hierarchical Optimization of Speed and Gearshift Control for Battery Electric Vehicles Using Preview Information. In Proceedings of the IEEE American Control Conference (ACC), Denver, CO, USA, 1–3 July 2020; pp. 4913–4919. [Google Scholar]
- Han, J.; Sciarretta, A.; Ojeda, L.L.; De Nunzio, G.; Thibault, L. Safe-and eco-driving control for connected and automated electric vehicles using analytical state-constrained optimal solution. IEEE Trans. Intell. Veh. 2018, 3, 163–172. [Google Scholar] [CrossRef]
- Ersal, T.; Kolmanovsky, I.; Masoud, N.; Ozay, N.; Scruggs, J.; Vasudevan, R.; Orosz, G. Connected and automated road vehicles: State of the art and future challenges. Veh. Syst. Dyn. 2020, 58, 672–704. [Google Scholar] [CrossRef]
- Tate, L.; Hochgreb, S.; Hall, J.; Bassett, M. Energy Efficiency of Autonomous Car Powertrain; Technical Report; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2018. [Google Scholar]
- Chen, T.D.; Kockelman, K.M.; Hanna, J.P. Operations of a shared, autonomous, electric vehicle fleet: Implications of vehicle & charging infrastructure decisions. Transp. Res. Part A Policy Pract. 2016, 94, 243–254. [Google Scholar]
- Zeng, X.; Wang, J. Globally energy-optimal speed planning for road vehicles on a given route. Transp. Res. Part C Emerg. Technol. 2018, 93, 148–160. [Google Scholar] [CrossRef]
- Chen, D.; Kim, Y.; Stefanopoulou, A.G. State of charge node planning with segmented traffic information. In Proceedings of the IEEE Annual American Control Conference (ACC), Milwaukee, WI, USA, 27–29 June 2018; pp. 4969–4974. [Google Scholar]
- Wan, N.; Vahidi, A.; Luckow, A. Optimal speed advisory for connected vehicles in arterial roads and the impact on mixed traffic. Transp. Res. Part C Emerg. Technol. 2016, 69, 548–563. [Google Scholar] [CrossRef]
- McDonough, K.; Kolmanovsky, I.; Filev, D.; Szwabowski, S.; Yanakiev, D.; Michelini, J. Stochastic fuel efficient optimal control of vehicle speed. In Optimization and Optimal Control in Automotive Systems; Springer: Berlin, Germany, 2014; pp. 147–162. [Google Scholar]
- Mehta, P.; Meyn, S. Q-learning and Pontryagin’s minimum principle. In Proceedings of the 48h IEEE Conference on Decision and Control (CDC) Held Jointly with 2009 28th Chinese Control Conference, Shanghai, China, 15–19 December 2009; pp. 3598–3605. [Google Scholar]
- Lee, H.; Song, C.; Kim, N.; Cha, S.W. Comparative Analysis of Energy Management Strategies for HEV: Dynamic Programming and Reinforcement Learning. IEEE Access 2020, 8, 67112–67123. [Google Scholar] [CrossRef]
- Lee, H.; Kang, C.; Park, Y.I.; Kim, N.; Cha, S.W. Online Data-Driven Energy Management of a Hybrid Electric Vehicle Using Model-Based Q-Learning. IEEE Access 2020, 8, 84444–84454. [Google Scholar] [CrossRef]
- Li, S.; Li, N.; Girard, A.; Kolmanovsky, I. Decision making in dynamic and interactive environments based on cognitive hierarchy theory: Formulation, solution, and application to autonomous driving. arXiv 2019, arXiv:1908.04005. [Google Scholar]
- Kouvaritakis, B.; Cannon, M. Model Predictive Control; Springer: Charm, Switzerland, 2016. [Google Scholar]
- Nguyen, T.W.; Islam, S.A.U.; Bruce, A.L.; Goel, A.; Bernstein, D.S.; Kolmanovsky, I.V. Output-Feedback RLS-Based Model Predictive Control. In Proceedings of the American Control Conference (ACC), Denver, CO, USA, 1–3 July 2020. [Google Scholar]
- Han, J.; Vahidi, A.; Sciarretta, A. Fundamentals of energy efficient driving for combustion engine and electric vehicles: An optimal control perspective. Automatica 2019, 103, 558–572. [Google Scholar] [CrossRef]
- Prakash, N.; Cimini, G.; Stefanopoulou, A.G.; Brusstar, M.J. Assessing fuel economy from automated driving: Influence of preview and velocity constraints. In Proceedings of the ASME 2016 Dynamic Systems and Control Conference, Boston, MA, USA, 6–8 July 2016. [Google Scholar]
- Seok, J.; Wang, Y.; Filev, D.; Kolmanovsky, I.; Girard, A. Energy-Efficient Control Approach for Automated HEV and BEV With Short-Horizon Preview Information. In Proceedings of the ASME 2018 Dynamic Systems and Control Conference, Atlanta, GA, USA, 30 September–3 October 2018. [Google Scholar]
- HomChaudhuri, B.; Vahidi, A.; Pisu, P. Fast model predictive control-based fuel efficient control strategy for a group of connected vehicles in urban road conditions. IEEE Trans. Control Syst. Technol. 2016, 25, 760–767. [Google Scholar] [CrossRef]
- Jia, Y.; Jibrin, R.; Itoh, Y.; Görges, D. Energy-optimal adaptive cruise control for electric vehicles in both time and space domain based on model predictive control. IFAC-PapersOnLine 2019, 52, 13–20. [Google Scholar] [CrossRef]
- Kim, Y.; Figueroa-Santos, M.; Prakash, N.; Baek, S.; Siegel, J.B.; Rizzo, D.M. Co-optimization of speed trajectory and power management for a fuel-cell/battery electric vehicle. Appl. Energy 2020, 260, 114254. [Google Scholar] [CrossRef]
- Brackstone, M.; McDonald, M. Car-following: A historical review. Transp. Res. Part F Traffic Psychol. Behav. 1999, 2, 181–196. [Google Scholar] [CrossRef]
- National Highway Traffic Safety Administration. Summary of State Speed Laws Ninth Edition: Current as of January 1, 2006; National Committee on Uniform Traffic Laws and Ordinances: Washington, DC, USA, 2006.
- Angel, E. Dynamic programming for noncausal problems. IEEE Trans. Autom. Control 1981, 26, 1041–1047. [Google Scholar] [CrossRef]
- Kalia, A.V.; Fabien, B.C. On Implementing Optimal Energy Management for EREV using Distance Constrained Adaptive Real-Time Dynamic Programming. Electronics 2020, 9, 228. [Google Scholar] [CrossRef]
- Bellman, R. Dynamic programming. Science 1966, 153, 34–37. [Google Scholar] [CrossRef]
- Sundstrom, O.; Guzzella, L. A generic dynamic programming Matlab function. In Proceedings of the IEEE Control Applications, (CCA) & Intelligent Control, (ISIC), St. Petersburg, Russia, 8–10 July 2009; pp. 1625–1630. [Google Scholar]
- Walker, K.; Samadi, B.; Huang, M.; Gerhard, J.; Butts, K.; Kolmanovsky, I. Design Environment for Nonlinear Model Predictive Control; Technical Report; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2016. [Google Scholar]
- Liao-McPherson, D.; Huang, M.; Kolmanovsky, I. A regularized and smoothed fischer–burmeister method for quadratic programming with applications to model predictive control. IEEE Trans. Autom. Control 2018, 64, 2937–2944. [Google Scholar] [CrossRef]
- Cagienard, R.; Grieder, P.; Kerrigan, E.C.; Morari, M. Move blocking strategies in receding horizon control. J. Process Control 2007, 17, 563–570. [Google Scholar] [CrossRef]
- Wipke, K.B.; Cuddy, M.R.; Burch, S.D. ADVISOR 2.1: A user-friendly advanced powertrain simulation using a combined backward/forward approach. IEEE Trans. Veh. Technol. 1999, 48, 1751–1761. [Google Scholar] [CrossRef]
Drive Cycle | Baseline | DP | Improvement (%) |
---|---|---|---|
WLTC | 17.55 | 14.96 | 14.76 |
US06 | 13.41 | 10.74 | 19.90 |
Without Warmstarting | With Warmstarting | |
---|---|---|
2.5336 s | 2.5210 s | |
2.5646 s | 2.5512 s |
Symbol | Description | Value (Unit) |
---|---|---|
m | Vehicle total mass | 1445 (kg) |
r | Wheel radius | 0.3166 (m) |
Vehicle frontal area | 2.06 (m) | |
Aerodynamic drag coefficient | 0.312 | |
Air density | 1.2 (kg/) | |
road inclination | 0 () | |
Rolling resistance coefficient | 0.0086 | |
Final drive ratio | 4.2 | |
Acceptable range of speed | (0, 150} (km/h) | |
Battery capacity | 55 (Ah) | |
Battery-depletion efficiency | 0.9 | |
Battery-recharge efficiency | 1.11 | |
max/min time headway | (s) | |
N | Prediction horizon | 10 |
Sampling time | 1 (s) | |
Control moves blocked | 3 |
WLTC | US06 | |
---|---|---|
Baseline | 17.55 | 13.41 |
Proposed | 15.64 (10.88%) | 11.42 (14.83%) |
Nominal MPC | 15.42 (12.14%) | 11.30 (15.73%) |
DP | 14.96 (14.76%) | 10.74 (19.90%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, K.; Nguyen, T.W.; Nam, K. Battery Energy Management of Autonomous Electric Vehicles Using Computationally Inexpensive Model Predictive Control. Electronics 2020, 9, 1277. https://doi.org/10.3390/electronics9081277
Han K, Nguyen TW, Nam K. Battery Energy Management of Autonomous Electric Vehicles Using Computationally Inexpensive Model Predictive Control. Electronics. 2020; 9(8):1277. https://doi.org/10.3390/electronics9081277
Chicago/Turabian StyleHan, Kyoungseok, Tam W. Nguyen, and Kanghyun Nam. 2020. "Battery Energy Management of Autonomous Electric Vehicles Using Computationally Inexpensive Model Predictive Control" Electronics 9, no. 8: 1277. https://doi.org/10.3390/electronics9081277
APA StyleHan, K., Nguyen, T. W., & Nam, K. (2020). Battery Energy Management of Autonomous Electric Vehicles Using Computationally Inexpensive Model Predictive Control. Electronics, 9(8), 1277. https://doi.org/10.3390/electronics9081277