# Optimal Power Flow Incorporating FACTS Devices and Stochastic Wind Power Generation Using Krill Herd Algorithm

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

- Modeling and including the stochastic nature of wind power generation in the problem formulation.
- Unlike the other research studies, in this paper, the OPF problem incorporating FACTS devices and stochastic wind power generation at the same time is solved.
- The KHA is used to minimize the fuel cost, active power losses across the transmission lines, emission, and CEEC, as the objective functions.

## 2. Problem Formulation

#### 2.1. General Formulation

#### 2.2. FACTS Devices Modeling

#### 2.2.1. TCSC Modeling

#### 2.2.2. TCPS Modeling

#### 2.3. Wind Power Generation Modeling

#### 2.4. Objective Functions

#### 2.4.1. Minimization of Fuel Cost

#### 2.4.2. Minimization of Active Power Losses across the Transmission Lines

#### 2.4.3. Minimization of Emission

#### 2.4.4. Minimization of the Combined Economic and Environmental Costs

#### 2.5. Constraints

#### 2.5.1. Load Flow Constraints

#### 2.5.2. Active and Reactive Power of the Generation Units

#### 2.5.3. Voltage at Each Bus

#### 2.5.4. Transformer Tap Settings

#### 2.5.5. Transmission Lines Loading

#### 2.5.6. TCSC Reactance Constraints

#### 2.5.7. TCPS Phase Shift

#### 2.6. Solution Method

## 3. Simulation Results

#### 3.1. Case 1: IEEE 30-Bus Test System

#### 3.1.1. Minimization of Fuel Cost

#### 3.1.2. Minimization of Active Power Losses across the Transmission Lines

#### 3.1.3. Minimization of Active Power Losses across the Transmission Lines

#### 3.1.4. Minimization of Combined Economic and Environmental Costs

#### 3.2. Case 2: IEEE 57-Bus Test System

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Kahourzade, S.; Mahmoudi, A.; Mokhlis, H.B. A Comparative Study of Multi-Objective Optimal Power Flow Based on Particle Swarm, Evolutionary Programming, and Genetic Algorithm. Electr. Eng.
**2015**, 97, 1–12. [Google Scholar] [CrossRef] [Green Version] - Viafora, N.; Delikaraoglou, S.; Pinson, P.; Holbøll, J. Chance-Constrained Optimal Power Flow with Non-Parametric Probability Distributions of Dynamic Line Ratings. Int. J. Electr. Power Energy Syst.
**2020**, 114, 105389. [Google Scholar] [CrossRef] - Dong, X.; Zhang, R.; Wang, M.; Wang, J.; Wang, C.; Wang, Y.; Wang, P. Capacity Assessment for Wind Power Integration Considering Transmission Line Electro-Thermal Inertia. Int. J. Electr. Power Energy Syst.
**2020**, 118, 105724. [Google Scholar] [CrossRef] - Miveh, M.R.; Rahmat, M.F.; Ghadimi, A.A.; Mustafa, M.W. Control Techniques for Three-Phase Four-Leg Voltage Source Inverters in Autonomous Microgrids: A Review. Renew. Sustain. Energy Rev.
**2016**, 54, 1592–1610. [Google Scholar] [CrossRef] - Heideier, R.; Bajay, S.V.; Jannuzzi, G.M.; Gomes, R.D.M.; Guanais, L.; Ribeiro, I.; Paccola, A. Impacts of Photovoltaic Distributed Generation and Energy Efficiency Measures on the Electricity Market of Three Representative Brazilian Distribution Utilities. Energy Sustain. Dev.
**2020**, 54, 60–71. [Google Scholar] [CrossRef] - Zhang, Y.; Yao, F.; Iu, H.H.-C.; Fernando, T.; Wong, K.P. Sequential Quadratic Programming Particle Swarm Optimization for Wind Power System Operations Considering Emissions. J. Mod. Power Syst. Clean Energy
**2013**, 1, 231–240. [Google Scholar] [CrossRef] [Green Version] - Baskaran, J.; Palanisamy, V. Optimal Location of FACTS Devices in a Power System Solved by a Hybrid Approach. Nonlinear Anal. Theory Methods Appl.
**2006**, 65, 2094–2102. [Google Scholar] [CrossRef] - Roy, R.; Jadhav, H.T. Optimal Power Flow Solution of Power System Incorporating Stochastic Wind Power Using Gbest Guided Artificial Bee Colony Algorithm. Int. J. Electr. Power Energy Syst.
**2015**, 64, 562–578. [Google Scholar] [CrossRef] - Gotham, D.J.; Heydt, G.T. Power Flow Control and Power Flow Studies for Systems with FACTS Devices. IEEE Trans. Power Syst.
**1998**, 13, 60–65. [Google Scholar] [CrossRef] - Bhattacharyya, B.; Gupta, V.K.; Kumar, S. UPFC with Series and Shunt FACTS Controllers for the Economic Operation of a Power System. Ain Shams Eng. J.
**2014**, 5, 775–787. [Google Scholar] [CrossRef] - Noroozian, M.; Angquist, L.; Ghandhari, M.; Andersson, G. Use of UPFC for Optimal Power Flow Control. IEEE Trans. Power Deliv.
**1997**, 12, 1629–1634. [Google Scholar] [CrossRef] - Behshad, M.; Lashkarara, A.; Rahmani, A.H. Optimal Location of UPFC Device Considering System Loadability, Total Fuel Cost, Power Losses and Cost of Installation. In Proceedings of the 2nd International Conference on Power Electronics and Intelligent Transportation System, Shenzhen, China, 19–20 December 2009. [Google Scholar]
- Basu, M. Multi-Objective Optimal Power Flow with FACTS Devices. Energy Convers. Manag.
**2011**, 52, 903–910. [Google Scholar] [CrossRef] - Pattanaik, J.K.; Basu, M.; Dash, D.P. Optimal Power Flow with FACTS Devices Using Artificial Immune Systems. In Proceedings of the International Conference on Technological Advancements in Power and Energy, Kollam, India, 21–23 December 2017. [Google Scholar]
- Vanitha, R.; Baskaran, J.; Sudhakaran, M. Multi Objective Optimal Power Flow with STATCOM Using DE in WAFGP. Indian J. Sci. Technol.
**2015**, 8, 191. [Google Scholar] [CrossRef] - Ongsakul, W.; Bhasaputra, P. Optimal Power Flow with FACTS Devices by Hybrid TS/SA Approach. Int. J. Electr. Power Energy Syst.
**2002**, 24, 851–857. [Google Scholar] [CrossRef] - Leung, H.C.; Chung, T.S. Optimal Power Flow with a Versatile FACTS Controller by Genetic Algorithm Approach. In Proceedings of the 5th International Conference on Advances in Power System Control, Operation and Management, Hong Kong, China, 30 October–1 November 2000. [Google Scholar]
- Easwaramoorthy, N.K.; Dhanasekaran, R. Solution of Optimal Power Flow Problem Incorporating Various FACTS Devices. Int. J. Comput. Appl. Technol.
**2012**, 55, 38–44. [Google Scholar] - Singh, B.; Kumar, R. A Comprehensive Survey on Enhancement of System Performances by Using Different Types of FACTS Controllers in Power Systems with Static and Realistic Load Models. Energy Rep.
**2020**, 6, 55–79. [Google Scholar] [CrossRef] - Singh, R.P.; Mukherjee, V.; Ghoshal, S.P. Particle Swarm Optimization with an Aging Leader and Challengers Algorithm for Optimal Power Flow Problem with FACTS Devices. Int. J. Electr. Power Energy Syst.
**2015**, 64, 1185–1196. [Google Scholar] [CrossRef] - Nguyen, T.T.; Mohammadi, F. Optimal Placement of TCSC for Congestion Management and Power Loss Reduction Using Multi-Objective Genetic Algorithm. Sustainability
**2020**, 12, 2813. [Google Scholar] [CrossRef] [Green Version] - Nguyen, T.T.; Pham, L.H.; Mohammadi, F.; Kien, L.C. Optimal Scheduling of Large-Scale Wind-Hydro-Thermal Systems with Fixed-Head Short-Term Model. Appl. Sci.
**2020**, 10, 2964. [Google Scholar] [CrossRef] - Saeed, M.A.; Ahmed, Z.; Yang, J.; Zhang, W. An Optimal Approach of Wind Power Assessment Using Chebyshev Metric for Determining the Weibull Distribution Parameters. Sustain. Energy Technol. Assess.
**2020**, 37, 100612. [Google Scholar] [CrossRef] - Shaw, B.; Mukherjee, V.; Ghoshal, S.P. A Novel Opposition-Based Gravitational Search Algorithm for Combined Economic and Emission Dispatch Problems of Power Systems. Int. J. Electr. Power Energy Syst.
**2012**, 35, 21–33. [Google Scholar] [CrossRef] - Gandomi, A.H.; Alavi, A.H. Krill Herd: A New Bio-Inspired Optimization Algorithm. Commun. Nonlinear Sci. Numer. Simul.
**2012**, 17, 4831–4845. [Google Scholar] [CrossRef] - Mishra, C.; Singh, S.P.; Rokadia, J. Optimal Power Flow in the Presence of Wind Power Using Modified Cuckoo Search. IET Gener. Transm. Distrib.
**2015**, 9, 615–626. [Google Scholar] [CrossRef] - Mohseni-Bonab, S.M.; Rabiee, A.; Mohammadi-Ivatloo, B. Voltage Stability Constrained Multi-Objective Optimal Reactive Power Dispatch Under Load and Wind Power Uncertainties: A Stochastic Approach. Renew. Energy
**2016**, 85, 598–609. [Google Scholar] [CrossRef] - Mukherjee, A.; Mukherjee, V. Solution of Optimal Power Flow with FACTS Devices Using a Novel Oppositional Krill Herd Algorithm. Int. J. Electr. Power Energy Syst.
**2016**, 78, 700–714. [Google Scholar] [CrossRef]

**Figure 4.**The convergence curves for the fuel cost minimization considering and neglecting the valve-point effect for the Test System 1.

**Figure 5.**The convergence curves for the minimization of power losses across the transmission lines for the Test System 1.

**Figure 8.**The convergence curves for the fuel cost minimization considering and neglecting the valve-point effect for the Test System 2.

**Figure 9.**The convergence curves for the minimization of power losses across the transmission lines for the Test System 2.

Reference | Uncertainty Model | Solution Method | Objective Functions |
---|---|---|---|

[6] | Weibull distribution function | Sequential quadratic programming PSO | Minimizing the total operating costs and minimizing emission |

[7] | Incomplete gamma function | Imperialist Competitive Algorithm (ICA) | Minimizing the fuel cost function |

[8] | Weibull probability density function | Gbest Guided-ABC | Minimizing the total operating costs |

[9] | Weibull probability density function | PSO | Minimizing the total operating and congestion costs |

Reference | Method | Objective Functions | FACTS Devices |
---|---|---|---|

[7] | Micro-genetic algorithm and hybrid method | Minimizing the fuel cost and power losses, Optimal location of FACTS devices | TCSC, TCPAR, UPFC, SVC |

[8] | PSAT software analysis | Improving voltage profile, Minimizing power losses | SVC |

[9] | Dimensional algorithm using NR load flow | Improving voltage profile, Minimizing power losses and fuel costs | TCSC, TCPR, SVC, STATCOM |

[11] | Genetic Algorithm (GA) and Differential Evolution Algorithm (DEA) | Minimizing the fuel cost and power losses, Optimal location of FACTS devices | UPFC, SVC, TCSC |

[12] | Dimensional algorithm | Heat control, Minimizing power losses, Improving power systems stability | UPFC |

[13] | GA and DEA | Minimizing the fuel cost and power losses | UPFC |

[14] | Artificial Immune Systems (AIS) | Minimizing the fuel cost | TCPS, TCSC |

[15] | GA | Minimizing the fuel cost and power losses | TCSC, TCPAR, UPFC |

[16] | DEA | Maximizing the loadability of transmission lines, Reducing the transmission lines losses | STATCOM |

[17] | Combined Tabu Search (TS) and Simulated Annealing (SA) method | Minimizing the total fuel cost | TCSC, TCPS |

[18] | GA | Minimizing the total fuel costs under security constraints | UPFC |

[19] | PSO | Reducing the FACTS devices installation costs, Reducing overload | TCSC, UPFC, SVC, TCVR |

**Table 3.**Results for fuel cost minimization without considering the valve-point effect for the Test System 1.

Control Variable | Without Wind Farm | With Wind Farm | |||
---|---|---|---|---|---|

KHA | ALC-PSO | DEA | RCGA | KHA | |

${P}_{{G}_{1}}$ (MW) | 179.755 | 185.240 | 180.260 | 192.460 | 137.526 |

${P}_{{G}_{2}}$ (MW) | 47.8185 | 46.3300 | 49.3200 | 48.3800 | 41.9122 |

${P}_{{G}_{5}}$ (MW) | 18.5154 | 20.8800 | 20.8200 | 19.5400 | 19.3311 |

${P}_{{G}_{8}}$ (MW) | 16.0965 | 15.6400 | 17.6100 | 11.6000 | 15.5927 |

${P}_{{G}_{11}}$ (MW) | 10.0000 | 11.1200 | 11.0500 | 10.0000 | 20.9936 |

${P}_{{G}_{13}}$ (MW) | 19.3238 | 12.5800 | 12.6900 | 12.0000 | 17.7110 |

Total Generation (MW) | 291.509 | 291.790 | 291.750 | 294.000 | 253.067 |

${P}_{wind}$ (MW) | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 34.4126 |

Fuel Cost ($/h) | 779.393 | 796.930 | 797.290 | 803.840 | 683.646 |

Emission (ton/h) | 0.42496 | 0.39020 | 0.37560 | 0.00000 | 0.28904 |

Power Losses (MW) | 8.10960 | 8.39000 | 8.35000 | 10.6000 | 4.08011 |

Computation Time (s) | 184.400 | 479.200 | 487.300 | 265.800 | 188.100 |

**Table 4.**Results for fuel cost minimization considering the valve-point effect for the Test System 1.

Control Variable | Without Wind Farm | With Wind Farm | |||
---|---|---|---|---|---|

KHA | ALC-PSO | DEA | RCGA | KHA | |

${P}_{{G}_{1}}$ (MW) | 191.690 | 199.850 | 199.130 | 198.810 | 130.246 |

${P}_{{G}_{2}}$ (MW) | 34.4058 | 38.2000 | 38.3200 | 38.9600 | 39.4530 |

${P}_{{G}_{5}}$ (MW) | 15.0000 | 20.1600 | 20.1700 | 19.1600 | 32.9689 |

${P}_{{G}_{8}}$ (MW) | 10.0000 | 11.1500 | 11.4300 | 10.6400 | 29.5335 |

${P}_{{G}_{11}}$ (MW) | 19.2954 | 10.1300 | 10.4300 | 13.5600 | 11.8032 |

${P}_{{G}_{13}}$ (MW) | 21.0191 | 12.6600 | 12.6600 | 12.0300 | 12.0000 |

Total Generation (MW) | 291.410 | 292.150 | 292.140 | 293.160 | 256.005 |

${P}_{wind}$ (MW) | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 32.6020 |

Fuel Cost ($/h) | 824.150 | 825.890 | 826.540 | 831.030 | 676.762 |

Emission (ton/h) | 0.44373 | 0.44124 | 0.43830 | 0.43660 | 0.30525 |

Power Losses (MW) | 8.01050 | 8.75000 | 8.74000 | 9.76000 | 5.20730 |

Computation Time (s) | 185.700 | 503.120 | 505.600 | 714.800 | 189.000 |

**Table 5.**Results for minimizing the active power losses across the transmission lines for the Test System 1.

Control Variable | Without Wind Farm | With Wind Farm | |||
---|---|---|---|---|---|

KHA | ALC-PSO | DEA | RCGA | KHA | |

${P}_{{G}_{1}}$ (MW) | 98.0937 | 74.6900 | 77.5900 | 77.5800 | 15.7459 |

${P}_{{G}_{2}}$ (MW) | 53.5641 | 67.3000 | 67.3000 | 69.5800 | 80.0000 |

${P}_{{G}_{5}}$ (MW) | 50.0000 | 50.0000 | 50.0000 | 49.9800 | 50.0000 |

${P}_{{G}_{8}}$ (MW) | 35.0000 | 34.6600 | 34.8500 | 34.9600 | 35.0000 |

${P}_{{G}_{11}}$ (MW) | 16.5549 | 27.2600 | 27.0400 | 23.6900 | 30.0000 |

${P}_{{G}_{13}}$ (MW) | 32.8586 | 32.2200 | 32.3600 | 30.4300 | 40.0000 |

Total Generation (MW) | 286.071 | 286.130 | 285.140 | 286.220 | 250.745 |

${P}_{wind}$ (MW) | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 34.4212 |

Fuel Cost ($/h) | 992.050 | 992.180 | 992.300 | 985.210 | 918.639 |

Emission (ton/h) | 0.21091 | 0.21090 | 0.21090 | 0.21440 | 0.21031 |

Power Losses (MW) | 2.92130 | 2.98000 | 2.99000 | 3.07000 | 1.76710 |

Computation Time (s) | 170.150 | 482.100 | 497.400 | 711.700 | 174.300 |

Control Variable | Without Wind Farm | With Wind Farm | |||
---|---|---|---|---|---|

KHA | ALC-PSO | DEA | RCGA | KHA | |

${P}_{{G}_{1}}$ (MW) | 51.3924 | 64.5200 | 63.5000 | 63.9800 | 45.9204 |

${P}_{{G}_{2}}$ (MW) | 80.0000 | 66.9000 | 67.9200 | 67.7500 | 51.6969 |

${P}_{{G}_{5}}$ (MW) | 50.0000 | 50.0000 | 50.0000 | 50.0000 | 50.0000 |

${P}_{{G}_{8}}$ (MW) | 35.0000 | 35.0000 | 35.0000 | 35.0000 | 35.0000 |

${P}_{{G}_{11}}$ (MW) | 30.0000 | 30.0000 | 30.0000 | 29.9600 | 30.0000 |

${P}_{{G}_{13}}$ (MW) | 40.0000 | 40.0000 | 40.0000 | 40.0000 | 40.0000 |

Total Generation (MW) | 286.392 | 286.420 | 286.420 | 286.690 | 252.617 |

${P}_{wind}$ (MW) | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 33.3285 |

Fuel Cost ($/h) | 1012.75 | 1014.24 | 1015.10 | 1015.80 | 906.068 |

Emission (ton/h) | 0.20469 | 0.20475 | 0.20480 | 0.20490 | 0.19587 |

Power Losses (MW) | 2.99240 | 3.02000 | 3.02000 | 3.29000 | 2.54580 |

Computation Time (s) | 169.140 | 506.100 | 511.300 | 706.000 | 173.180 |

Control Variable | Without Wind Farm | With Wind Farm | ||
---|---|---|---|---|

KHA | ALC-PSO | DEA | KHA | |

${P}_{{G}_{1}}$ (MW) | 126.476 | 115.230 | 107.980 | 110.376 |

${P}_{{G}_{2}}$ (MW) | 66.4293 | 56.5700 | 58.5700 | 63.8014 |

${P}_{{G}_{5}}$ (MW) | 29.8519 | 31.8800 | 32.3800 | 23.7588 |

${P}_{{G}_{8}}$ (MW) | 27.9298 | 27.5400 | 27.6100 | 17.1252 |

${P}_{{G}_{11}}$ (MW) | 18.0473 | 23.8900 | 29.5100 | 16.7590 |

${P}_{{G}_{13}}$ (MW) | 19.8514 | 34.2300 | 33.2700 | 23.6716 |

Total Generation (MW) | 288.585 | 289.330 | 289.320 | 255.492 |

${P}_{wind}$ (MW) | 0.00000 | 0.00000 | 0.00000 | 32.3655 |

Fuel Cost ($/h) | 897.430 | 907.170 | 922.360 | 784.653 |

Emission (ton/h) | 0.23990 | 0.24302 | 0.23640 | 0.22423 |

Power Losses (MW) | 5.18590 | 5.92000 | 5.93000 | 4.45820 |

CEEC | 1232.80 | 1234.44 | 1238.09 | 1095.72 |

Computation Time (s) | 189.140 | 515.100 | 521.300 | 189.180 |

**Table 8.**Results for fuel cost minimization without considering the valve-point effect for the Test System 2.

Control Variable | Without Wind Farm | With Wind Farm | |||
---|---|---|---|---|---|

KHA | ALC-PSO | DEA | RCGA | KHA | |

${P}_{{G}_{1}}$ (MW) | 584.6750 | 514.2600 | 520.0900 | 517.4500 | 422.6630 |

${P}_{{G}_{2}}$ (MW) | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 105.4910 |

${P}_{{G}_{5}}$ (MW) | 75.16610 | 123.5300 | 103.7400 | 94.81000 | 161.5274 |

${P}_{{G}_{6}}$ (MW) | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 182.3932 |

${P}_{{G}_{8}}$ (MW) | 166.0264 | 159.6700 | 175.6300 | 181.7500 | 0.00000 |

${P}_{{G}_{9}}$ (MW) | 253.7019 | 0.000000 | 0.000000 | 0.000000 | 125.9095 |

${P}_{{G}_{12}}$ (MW) | 211.8802 | 486.8900 | 485.2300 | 489.7700 | 256.8480 |

Total Generation (MW) | 1291.449 | 1284.350 | 1284.690 | 1283.780 | 1254.832 |

${P}_{wind}$ (MW) | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 36.37860 |

Fuel Cost ($/h) | 7768.000 | 8103.180 | 8309.270 | 8413.430 | 6748.000 |

Emission (ton/h) | 2.379500 | 2.397820 | 2.433300 | 2.433100 | 2.018000 |

Power Losses (MW) | 40.64980 | 33.55000 | 33.89000 | 32.98000 | 40.41060 |

Computation Time (s) | 678.9000 | 680.1200 | 689.9000 | 847.9000 | 714.7000 |

**Table 9.**Results for minimizing the active power losses across the transmission lines for the Test System 2.

Control Variable | Without Wind Farm | With Wind Farm | |||
---|---|---|---|---|---|

KHA | ALC-PSO | DEA | RCGA | KHA | |

${P}_{{G}_{1}}$ (MW) | 192.3159 | 303.2400 | 318.5800 | 311.3400 | 176.1450 |

${P}_{{G}_{2}}$ (MW) | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 16.85120 |

${P}_{{G}_{5}}$ (MW) | 34.34410 | 63.19000 | 45.90000 | 60.61300 | 156.9747 |

${P}_{{G}_{6}}$ (MW) | 134.0298 | 0.000000 | 0.000000 | 0.000000 | 58.62480 |

${P}_{{G}_{8}}$ (MW) | 469.7929 | 400.7500 | 407.6500 | 400.0600 | 158.5790 |

${P}_{{G}_{9}}$ (MW) | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 290.1441 |

${P}_{{G}_{12}}$ (MW) | 436.1565 | 500.0000 | 495.0300 | 495.1400 | 371.8631 |

Total Generation (MW) | 1266.639 | 1267.180 | 1267.160 | 1267.153 | 1229.181 |

${P}_{wind}$ (MW) | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 35.46800 |

Fuel Cost ($/h) | 15,354.40 | 15,423.88 | 15,691.30 | 15,348.11 | 13,078.79 |

Emission (ton/h) | 1.916836 | 1.906545 | 1.966905 | 1.917299 | 1.507600 |

Power Losses (MW) | 21.93910 | 22.48000 | 22.46000 | 22.46300 | 21.11000 |

Computation Time (s) | 670.2000 | 881.3000 | 701.7000 | 691.0450 | 715.0000 |

**Table 10.**Results for minimizing the active power losses across the transmission lines for the Test System 2.

Control Variable | Without Wind Farm | With Wind Farm | |||
---|---|---|---|---|---|

KHA | ALC-PSO | DEA | RCGA | KHA | |

${P}_{{G}_{1}}$ (MW) | 333.585 | 341.910 | 298.12 | 300.23 | 143.311 |

${P}_{{G}_{2}}$ (MW) | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 149.200 |

${P}_{{G}_{5}}$ (MW) | 170.617 | 91.9000 | 83.24 | 91.43 | 158.020 |

${P}_{{G}_{6}}$ (MW) | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 161.346 |

${P}_{{G}_{8}}$ (MW) | 311.707 | 419.250 | 413.63 | 406.26 | 220.977 |

${P}_{{G}_{9}}$ (MW) | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 173.139 |

${P}_{{G}_{12}}$ (MW) | 453.292 | 418.450 | 474.14 | 472.08 | 228.994 |

Total Generation (MW) | 1269.20 | 1271.51 | 1269.13 | 1270 | 1234.99 |

${P}_{wind}$ (MW) | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 34.2539 |

Fuel Cost ($/h) | 15,667.9 | 15,856.1 | 15,914.3 | 15,577.3 | 15,202.6 |

Emission (ton/h) | 1.82129 | 1.88918 | 1.85870 | 1.83871 | 1.72090 |

Power Losses (MW) | 18.4031 | 20.7100 | 18.3300 | 19.2000 | 18.4442 |

Computation Time (s) | 690.100 | 878.700 | 694.200 | 690.140 | 705.510 |

Control Variable | Without Wind Farm | With Wind Farm | ||
---|---|---|---|---|

KHA | ALC-PSO | DEA | KHA | |

${P}_{{G}_{1}}$ (MW) | 346.8868 | 480.9300 | 475.6800 | 92.82350 |

${P}_{{G}_{2}}$ (MW) | 0.000000 | 0.000000 | 0.000000 | 286.8995 |

${P}_{{G}_{5}}$ (MW) | 173.0854 | 80.14000 | 80.64000 | 89.87540 |

${P}_{{G}_{6}}$ (MW) | 0.000000 | 0.000000 | 0.000000 | 193.2463 |

${P}_{{G}_{8}}$ (MW) | 157.0796 | 270.4200 | 276.0300 | 13.55130 |

${P}_{{G}_{9}}$ (MW) | 0.000000 | 0.000000 | 0.000000 | 89.01440 |

${P}_{{G}_{12}}$ (MW) | 583.2398 | 446.0400 | 447.2000 | 459.5085 |

Total Generation (MW) | 1260.291 | 1279.530 | 1279.550 | 1224.918 |

${P}_{wind}$ (MW) | 0.000000 | 0.000000 | 0.000000 | 36.18200 |

Fuel Cost ($/h) | 9917.870 | 10,237.79 | 10,408.49 | 8481.851 |

Emission (ton/h) | 2.200089 | 2.227447 | 2.211635 | 1.620300 |

Power Losses (MW) | 9.491500 | 28.73000 | 28.75000 | 10.30090 |

CEEC | 11,410.00 | 13,032.56 | 13,183.42 | 10,060.00 |

Computation Time (s) | 690.1000 | 700.1400 | 702.2000 | 717.5100 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Abdollahi, A.; Ghadimi, A.A.; Miveh, M.R.; Mohammadi, F.; Jurado, F.
Optimal Power Flow Incorporating FACTS Devices and Stochastic Wind Power Generation Using Krill Herd Algorithm. *Electronics* **2020**, *9*, 1043.
https://doi.org/10.3390/electronics9061043

**AMA Style**

Abdollahi A, Ghadimi AA, Miveh MR, Mohammadi F, Jurado F.
Optimal Power Flow Incorporating FACTS Devices and Stochastic Wind Power Generation Using Krill Herd Algorithm. *Electronics*. 2020; 9(6):1043.
https://doi.org/10.3390/electronics9061043

**Chicago/Turabian Style**

Abdollahi, Arsalan, Ali Asghar Ghadimi, Mohammad Reza Miveh, Fazel Mohammadi, and Francisco Jurado.
2020. "Optimal Power Flow Incorporating FACTS Devices and Stochastic Wind Power Generation Using Krill Herd Algorithm" *Electronics* 9, no. 6: 1043.
https://doi.org/10.3390/electronics9061043