Next Article in Journal
Optimized Lossless Embedded Compression for Mobile Multimedia Applications
Previous Article in Journal
A Pipeline for Adaptive Filtering and Transformation of Noisy Left-Arm ECG to Its Surrogate Chest Signal
Previous Article in Special Issue
Multi-Sensor Accurate Forklift Location and Tracking Simulation in Industrial Indoor Environments
Open AccessArticle

3D Multiple Sound Source Localization by Proposed Cuboids Nested Microphone Array in Combination with Adaptive Wavelet-Based Subband GEVD

1
Department of Electricity, Universidad Tecnológica Metropolitana, Av. José Pedro Alessandri 1242, Santiago 7800002, Chile
2
Electrical Engineering Department, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
3
Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
4
Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
5
Electrical Engineering Department, Universidad de Santiago de Chile, Av. Ecuador 3519, Santiago 9170124, Chile
6
Department of Computing and Industries, Universidad Católica del Maule, Talca 3466706, Chile
7
Department of Electrical Engineering, Universidad de Chile, Santiago 8370451, Chile
*
Authors to whom correspondence should be addressed.
Electronics 2020, 9(5), 867; https://doi.org/10.3390/electronics9050867
Received: 1 April 2020 / Revised: 17 May 2020 / Accepted: 20 May 2020 / Published: 23 May 2020
(This article belongs to the Special Issue Indoor Positioning Techniques)
Sound source localization is one of the applicable areas in speech signal processing. The main challenge appears when the aim is a simultaneous multiple sound source localization from overlapped speech signals with an unknown number of speakers. Therefore, a method able to estimate the number of speakers, along with the speaker’s location, and with high accuracy is required in real-time conditions. The spatial aliasing is an undesirable effect of the use of microphone arrays, which decreases the accuracy of localization algorithms in noisy and reverberant conditions. In this article, a cuboids nested microphone array (CuNMA) is first proposed for eliminating the spatial aliasing. The CuNMA is designed to receive the speech signal of all speakers in different directions. In addition, the inter-microphone distance is adjusted for considering enough microphone pairs for each subarray, which prepares appropriate information for 3D sound source localization. Subsequently, a speech spectral estimation method is considered for evaluating the speech spectrum components. The suitable spectrum components are selected and the undesirable components are denied in the localization process. The speech information is different in frequency bands. Therefore, the adaptive wavelet transform is used for subband processing in the proposed algorithm. The generalized eigenvalue decomposition (GEVD) method is implemented in sub-bands on all nested microphone pairs, and the probability density function (PDF) is calculated for estimating the direction of arrival (DOA) in different sub-bands and continuing frames. The proper PDFs are selected by thresholding on the standard deviation (SD) of the estimated DOAs and the rest are eliminated. This process is repeated on time frames to extract the best DOAs. Finally, K-means clustering and silhouette criteria are considered for DOAs classification in order to estimate the number of clusters (speakers) and the related DOAs. All DOAs in each cluster are intersected for estimating the position of the 3D speakers. The closest point to all DOA planes is selected as a speaker position. The proposed method is compared with a hierarchical grid (HiGRID), perpendicular cross-spectra fusion (PCSF), time-frequency wise spatial spectrum clustering (TF-wise SSC), and spectral source model-deep neural network (SSM-DNN) algorithms based on the accuracy and computational complexity of real and simulated data in noisy and reverberant conditions. The results show the superiority of the proposed method in comparison with other previous works. View Full-Text
Keywords: sound source localization; nested microphone array; spectral estimation; wavelet transform; subband processing; clustering sound source localization; nested microphone array; spectral estimation; wavelet transform; subband processing; clustering
Show Figures

Figure 1

MDPI and ACS Style

Dehghan Firoozabadi, A.; Irarrazaval, P.; Adasme, P.; Zabala-Blanco, D.; Palacios-Játiva, P.; Azurdia-Meza, C. 3D Multiple Sound Source Localization by Proposed Cuboids Nested Microphone Array in Combination with Adaptive Wavelet-Based Subband GEVD. Electronics 2020, 9, 867.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop