Machine Learning Techniques for Assistive Robotics
1. Introduction
2. Machine Learning Techniques for Assistive Robotics
3. Future
Funding
Conflicts of Interest
Abbreviations
ANN | Artificial neural networks |
ADL | Activities of daily living |
IBk | Instance-based 32k-nearest neighbor |
SVM | Support vector machine |
1D-LTP | 1D local ternary patterns |
MFCC | Mel-frequency cepstral coefficients |
NIR | Near-infrared |
SE | Squeeze-and-excitation |
References
- Ferreira, J.M.; Pires, I.M.; Marques, G.; Garcia, N.M.; Zdravevski, E.; Lameski, P.; Flórez-Revuelta, F.; Spinsante, S. Identification of Daily Activites and Environments Based on the AdaBoost Method Using Mobile Device Data: A Systematic Review. Electronics 2020, 9, 192. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Martin, E.; Escalona, F.; Cazorla, M. Socially Assistive Robots for Older Adults and People with Autism: An Overview. Electronics 2020, 9, 367. [Google Scholar] [CrossRef] [Green Version]
- Pires, I.M.; Marques, G.; Garcia, N.M.; Pombo, N.; Flórez-Revuelta, F.; Spinsante, S.; Teixeira, M.C.; Zdravevski, E. Recognition of Activities of Daily Living and Environments Using Acoustic Sensors Embedded on Mobile Devices. Electronics 2019, 8, 1499. [Google Scholar] [CrossRef] [Green Version]
- Costa, A.; Rincon, J.A.; Julian, V.; Novais, P.; Carrascosa, C. A Low-Cost Cognitive Assistant. Electronics 2020, 9, 310. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, J.M.; Pires, I.M.; Marques, G.; García, N.M.; Zdravevski, E.; Lameski, P.; Flórez-Revuelta, F.; Spinsante, S.; Xu, L. Activities of Daily Living and Environment Recognition Using Mobile Devices: A Comparative Study. Electronics 2020, 9, 180. [Google Scholar] [CrossRef] [Green Version]
- Pires, I.M.; Marques, G.; Garcia, N.M.; Flórez-Revuelta, F.; Canavarro Teixeira, M.; Zdravevski, E.; Spinsante, S.; Coimbra, M. Pattern Recognition Techniques for the Identification of Activities of Daily Living Using a Mobile Device Accelerometer. Electronics 2020, 9, 509. [Google Scholar] [CrossRef] [Green Version]
- Korovesis, N.; Kandris, D.; Koulouras, G.; Alexandridis, A. Robot Motion Control via an EEG-Based Brain–Computer Interface by Using Neural Networks and Alpha Brainwaves. Electronics 2019, 8, 1387. [Google Scholar] [CrossRef] [Green Version]
- Maldonado-Bascón, S.; Iglesias-Iglesias, C.; Martín-Martín, P.; Lafuente-Arroyo, S. Fallen People Detection Capabilities Using Assistive Robot. Electronics 2019, 8, 915. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Li, X.; Liu, H.; Fu, Z. Online Learned Siamese Network with Auto-Encoding Constraints for Robust Multi-Object Tracking. Electronics 2019, 8, 595. [Google Scholar] [CrossRef] [Green Version]
- Aziz, S.; Awais, M.; Akram, T.; Khan, U.; Alhussein, M.; Aurangzeb, K. Automatic Scene Recognition through Acoustic Classification for Behavioral Robotics. Electronics 2019, 8, 483. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zhang, Z.; Zhong, L.; Chen, T.; Chen, J.; Yu, Y. Three-Stream Convolutional Neural Network with Squeeze-and-Excitation Block for Near-Infrared Facial Expression Recognition. Electronics 2019, 8, 385. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez-Martin, E.; Cazorla, M.; Orts-Escolano, S. Machine Learning Techniques for Assistive Robotics. Electronics 2020, 9, 821. https://doi.org/10.3390/electronics9050821
Martinez-Martin E, Cazorla M, Orts-Escolano S. Machine Learning Techniques for Assistive Robotics. Electronics. 2020; 9(5):821. https://doi.org/10.3390/electronics9050821
Chicago/Turabian StyleMartinez-Martin, Ester, Miguel Cazorla, and Sergio Orts-Escolano. 2020. "Machine Learning Techniques for Assistive Robotics" Electronics 9, no. 5: 821. https://doi.org/10.3390/electronics9050821
APA StyleMartinez-Martin, E., Cazorla, M., & Orts-Escolano, S. (2020). Machine Learning Techniques for Assistive Robotics. Electronics, 9(5), 821. https://doi.org/10.3390/electronics9050821