A New Intra-Cluster Scheduling Scheme for Real-Time Flows in Wireless Sensor Networks
Abstract
1. Introduction
2. Proposed Scheme
Procedure of the Proposed Scheme
3. Performance Evaluation
3.1. Impact of Deadline
3.2. Impact of Flows
3.3. Impact of Clusters
3.4. Impact of Intra-Cluster Time Slots
3.5. IntraSend Time Slots Utilization
3.6. IntraRecv Time Slots Utilization
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jin, X.; Saifullah, A.; Lu, C.; Zeng, P. Real-Time Scheduling for Event-Triggered and Time-Triggered Flows in Industrial Wireless Sensor-Actuator Networks. In Proceedings of the IEEE Conference on Computer Communications, Paris, France, 29 April–2 May 2019. [Google Scholar]
- Soua, R.; Minet, P. Multichannel assignment protocols in wireless sensor networks: A comprehensive survey. Pervasive Mob. Comput. 2015, 16, 2–21. [Google Scholar]
- Bhatia, A.; Hansdah, R.C. A Distributed TDMA Slot Scheduling Algorithm for Spatially Correlated Contention in WSNs. Mob. Inf. Syst. 2015. [Google Scholar] [CrossRef]
- Bakshi, M.; Jaumard, B.; Kaddour, M.; Narayanan, L. On TDMA scheduling in wireless sensor networks. In Proceedings of the IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Vancouver, BC, Canada, 15–18 May 2016; pp. 1–6. [Google Scholar]
- Ramanathan, S.; Lloyd, E.L. Scheduling algorithms for multi-hop radio networks. IEEE/ACM Trans. Netw. 1993, 1, 166–177. [Google Scholar] [CrossRef]
- Ali, G.; Kim, K.H.; Kim, K.; Aldwairi, M. Interference Aware Real-Time Flows Scheduling in Cluster Based Wireless Sensor Networks. Int. J. Eng. Technol. Innov. 2016, 6, 93–102. [Google Scholar]
- Gobinath, T.; Tamilarasi, A. RFDCAR: Robust failure node detection and dynamic congestion aware routing with network coding technique for wireless sensor network. Peer Peer Netw. Appl. 2019. [Google Scholar] [CrossRef]
- Umar, I.A.; Hanapi, Z.M.; Sali, A.; Zulkarnain, Z.A. Towards overhead mitigation in state-free geographic forwarding protocols for wireless sensor networks. Wirel. Netw. 2019, 25, 1017–1030. [Google Scholar] [CrossRef]
- Lenka, M.R.; Swain, A.R.; Sahoo, M.N. Distributed Slot Scheduling Algorithm for Hybrid CSMA/TDMA MAC in Wireless Sensor Networks. In Proceedings of the IEEE International Conference on Networking, Architecture and Storage (NAS), Long Beach, CA, USA, 8–10 August 2016; pp. 1–4. [Google Scholar]
- Xuelin, C.; Zuxun, S. An overview of slot assignment (SA) for TDMA. In Proceedings of the IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Ningbo, China, 19–22 September 2015; pp. 1–5. [Google Scholar]
- Di Francesco, M.; Pinotti, C.M.; Das, S.K. Interferencefree scheduling with bounded delay in cluster-tree wireless sensor networks. In Proceedings of the 15th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, New York, NY, USA, 21–25 October 2012; pp. 99–106. [Google Scholar]
- Chatterjee, P.; Ghosh, S.C.; Das, N. Load Balanced Coverage with Graded Node Deployment in Wireless Sensor Networks. IEEE Trans. Multi-Scale Comput. Syst. 2017, 3, 100–112. [Google Scholar] [CrossRef]
- Oladimeji, M.O.; Turkey, M.; Dudley, S. HACH: Heuristic Algorithm for Clustering Hierarchy protocol in wireless sensor networks. Appl. Soft Comput. 2017, 55, 452–461. [Google Scholar] [CrossRef]
- Hasan, M.Z.; Al-Rizzo, H.; Al-Turjman, F. A Survey on Multipath Routing Protocols for QoS Assurances in Real-Time Wireless Multimedia Sensor Networks. IEEE Commun. Surv. Tutor. 2017, 19, 1424–1456. [Google Scholar] [CrossRef]
- Rhee, I.; Warrier, A.; Min, J.; Xu, L. DRAND: Distributed Randomized TDMA Scheduling for Wireless Ad Hoc Networks. IEEE Trans. Mob. Comput. 2009, 8, 1384–1396. [Google Scholar] [CrossRef]
- Li, Y.; Chen, C.S.; Song, Y.Q.; Wang, Z. Real-Time QOS Support in Wireless Sensor Networks: A survey. IFAC Prec. Vol. 2007, 40, 101–108. [Google Scholar] [CrossRef]
- Diallo, O.; Rodrigues, J.C.; Sene, M. Real-time data management on wireless sensor networks: A survey. J. Net. Comp App. 2012, 35, 1013–1021. [Google Scholar] [CrossRef]
- Suriyachai, P.; Brown, J.; Roedig, U. Time-critical data delivery in wireless sensor networks. In Proceedings of the 6th IEEE International Conference on Distributed Computing in Sensor Systems, Santa Barbara, CA, USA, 21–23 June 2010; pp. 216–229. [Google Scholar]
- Zhang, H.; Soldati, P.; Johansson, M. Optimal link scheduling and channel assignment for convergecast in linear WirelessHART networks. In Proceedings of the WiOPT, Seoul, Korea, 23–27 June 2009. [Google Scholar]
- Saifullah, A.; Xu, Y.; Lu, C.; Chen, Y. End-to-end delay analysis for fixed priority scheduling in WirelessHART networks. In Proceedings of the 17th IEEE Real-Time and Embedded Technology and Applications Symposium, Chicago, IL, USA, 11–14 April 2011; pp. 13–22. [Google Scholar]
- Saifullah, A.; Xu, Y.; Lu, C.; Chen, Y. Real-time scheduling for WirelessHART networks. In Proceedings of the 31st IEEE Real-Time Systems Symposium, San Diego, CA, USA, 30 November–3 December 2010. [Google Scholar]
- Cheng, P.; Zhang, F.; Chen, J.; Sun, Y.; Shen, X. A Distributed TDMA Scheduling Algorithm for Target Tracking in Ultrasonic Sensor Networks. IEEE Tran Ind. Elect. 2013, 60, 3836–3845. [Google Scholar] [CrossRef]
- Pawar, P.M.; Nielsen, R.H.; Prasad, N.R.; Ohmori, S.; Prasad, R. M-GCF: Multicolor-Green Conict Free scheduling algorithm for WSN. In Proceedings of the 15th International Symposium on Wireless Personal Multimedia Communications, Taipei, Taiwan, 24–27 September 2012; pp. 143–147. [Google Scholar]
- Ergen, S.C.; Varaiya, P. TDMA scheduling algorithms for wireless sensor networks. Wirel. Netw. 2010, 16, 985–997. [Google Scholar] [CrossRef]
- Pawar, P.M.; Nielsen, R.H.; Prasad, N.R.; Ohmori, S.; Prasad, R. GCF: Green Conflict Free TDMA scheduling for wireless sensor network. In Proceedings of the IEEE International Conference on Communications (ICC), Ottawa, ON, Canada, 10–15 June 2012; pp. 5726–5730. [Google Scholar]
- Huang, P.; Xiao, L.; Soltani, S.; Mutka, M.W.; Xi, N. The Evolution of MAC Protocols in Wireless Sensor Networks: A Survey. IEEE Comm. Sur. Tut. 2013, 15, 101–120. [Google Scholar] [CrossRef]
- Pawar, P.M.; Nielsen, R.H.; Prasad, N.R.; Prasad, R. H-GCF: A Hybrid Green Conflict Free scheduling algorithm for mobile Wireless Sensor Networks. In Proceedings of the 16th International Symposium on Wireless Personal Multimedia Communications, Atlantic City, NJ, USA; 2013; pp. 1–5. [Google Scholar]
- Ali, G.; Kang, S.; Kim, K.H.; Kim, K. Towards Cluster-Based Real-Time Flow Scheduling in Interference-Aware Wireless Sensor Networks. In Proceedings of the IEEE 16th International Conference on Computational Science and Engineering, Sydney, Australia, 3–5 December 2013; pp. 523–530. [Google Scholar]
- Pawar, P.M.; Kulkarni, N.P.; Mantri, D.S. Secure Scheduling for Cluster-based TDMA Schedule MAC in Wireless Sensor Network. In Proceedings of the IEEE Global Conference on Wireless Computing and Networking (GCWCN), Lonavala, India, 23–24 November 2018; pp. 119–123. [Google Scholar]
- Camilo, T.; Silva, J.S.; Rodrigues, S.A.; Boavida, F. GENSEN: A topology generator for real wireless sensor networks deployment. In Proceedings of the 5th IFIP Workshop on Software Technologies for Future Embedded & Ubiquitous Systems (SEUS 2007), Santorini, Greece, 7–8 May 2007. [Google Scholar]
Previous IntraSend Scheduling | ||||||
---|---|---|---|---|---|---|
Cluster | Flow# | 1 | 5 | 9 | ||
H1 | F1 | 0 | a→b | b→H1 | 5 | |
F5 | 0 | j→c | c→H1 | 9 | ||
H2 | F2 | 0 | i→h | h→H2 | 5 | |
F3 | 0 | p→H2 | 1 | |||
F4 | 0 | e→g | g→H2 | 9 |
Previous InterComm Scheduling | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Flow# | 2 | 3 | 6 | 7 | 10 | 11 | 14 | 15 | 18 | ||
F1 | 5 | H1→H3 | H3→H5 | 7 | |||||||
F2 | 5 | H2→H1 | H1→H3 | 11 | |||||||
F3 | 1 | H2→H4 | H4→H5 | 3 | |||||||
F4 | 9 | H2→H4 | H4→H3 | 14 | |||||||
F5 | 9 | H1→H2 | H2→H4 | 18 |
Previous IntraRecv Scheduling | |||||||||
---|---|---|---|---|---|---|---|---|---|
Cluster | Flow# | 4 | 8 | 12 | 16 | 20 | 24 | ||
H5 | F1 | 7 | H5→m | m→q | 12 | ||||
F5 | 18 | H5→n | n→t | 24 | |||||
H3 | F2 | 11 | H3→k | k→l | 16 | ||||
F4 | 14 | H3→d | 16 | ||||||
H4 | F3 | 3 | H4→r | r→o | 8 |
IntraSend Scheduling | ||||||
---|---|---|---|---|---|---|
Cluster | Flow# | 1 | 4 | 5 | ||
H1 | F1 | 0 | a→b | b→H1 | 4 | |
F5 | 0 | j→c | c→H1 | 5 | ||
H2 | F2 | 0 | i→h | h→H2 | 4 | |
F3 | 0 | p→H2 | 1 | |||
F4 | 0 | e→g | g→H2 | 5 |
InterComm Scheduling | ||||||||
---|---|---|---|---|---|---|---|---|
Flow# | 2 | 3 | 6 | 7 | 10 | 11 | ||
F1 | 4 | H1→H3 | H3→H5 | 7 | ||||
F2 | 4 | H2→H1 | H1→H3 | 11 | ||||
F3 | 1 | H2→H4 | H4→H5 | 3 | ||||
F4 | 5 | H2→H4 | H4→H3 | 10 | ||||
F5 | 4 | H1→H2 | H2→H4 | 11 |
IntraRecv Scheduling | |||||||||
---|---|---|---|---|---|---|---|---|---|
Cluster | Flow# | 4 | 5 | 8 | 9 | 12 | 13 | ||
H5 | F1 | 7 | H5→m | m→q | 9 | ||||
F5 | 11 | H5→n | n→t | 13 | |||||
H3 | F2 | 11 | H3→k | k→l | 13 | ||||
F4 | 10 | H3→d | 12 | ||||||
H4 | F3 | 3 | H4→r | r→o | 5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, G.; Moreira, F.; Alfandi, O.; Shah, B.; Ilyas, M. A New Intra-Cluster Scheduling Scheme for Real-Time Flows in Wireless Sensor Networks. Electronics 2020, 9, 683. https://doi.org/10.3390/electronics9040683
Ali G, Moreira F, Alfandi O, Shah B, Ilyas M. A New Intra-Cluster Scheduling Scheme for Real-Time Flows in Wireless Sensor Networks. Electronics. 2020; 9(4):683. https://doi.org/10.3390/electronics9040683
Chicago/Turabian StyleAli, Gohar, Fernando Moreira, Omar Alfandi, Babar Shah, and Mohammed Ilyas. 2020. "A New Intra-Cluster Scheduling Scheme for Real-Time Flows in Wireless Sensor Networks" Electronics 9, no. 4: 683. https://doi.org/10.3390/electronics9040683
APA StyleAli, G., Moreira, F., Alfandi, O., Shah, B., & Ilyas, M. (2020). A New Intra-Cluster Scheduling Scheme for Real-Time Flows in Wireless Sensor Networks. Electronics, 9(4), 683. https://doi.org/10.3390/electronics9040683