Direct 3-D Sparse Imaging Using Non-Uniform Samples Without Data Interpolation
Abstract
:1. Introduction
2. Methods and Data
2.1. Signal Model
2.2. Direct 3-D Sparse Imaging Modeling
2.3. Proposed Sparse Imaging Algorithm
3. Experiments and Results
3.1. Single Target
3.2. Multi Targets
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dungan, K.E.; Potter, L.C. 3-D Imaging of Vehicles using Wide Aperture Radar. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 187–200. [Google Scholar] [CrossRef]
- Li, C.; Zhou, X.; Chang, L. Application of feature modelling method based on SAR image in target interpretation. IET Int. Radar Conf. 2019, 2019, 6210–6213. [Google Scholar] [CrossRef]
- Joerg, H.; Member, S.; Pardini, M.; Hajnsek, I.; Papathanassiou, K.P. 3-D Scattering Characterization of Agricultural Crops at C-Band Using SAR Tomography. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3976–3989. [Google Scholar] [CrossRef]
- Ertin, E.; Moses, R.L.; Potter, L.C. Interferometric methods for three-dimensional target reconstruction with multipass circular SAR. IET Radar Sonar Navig. 2010, 4, 464–473. [Google Scholar] [CrossRef]
- Feng, D.; An, D.; Huang, X.; Li, Y. A Phase Calibration Method Based on Phase Gradient Autofocus for Airborne Holographic SAR Imaging. IEEE Geosci. Remote Sens. Lett. 2019, PP, 1–5. [Google Scholar] [CrossRef]
- Ponce, O.; Prats-iraola, P.; Member, S.; Scheiber, R.; Reigber, A.; Moreira, A. First Airborne Demonstration of Holographic SAR Tomography With Fully Polarimetric Multicircular Acquisitions at L-Band. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6170–6196. [Google Scholar] [CrossRef]
- Austin, C.D.; Ertin, E.; Moses, R.L. Sparse signal methods for 3-D radar imaging. IEEE J. Sel. Top. Signal Process. 2011, 5, 408–423. [Google Scholar] [CrossRef]
- Liu, D.; Boufounos, P.T. Compressive sensing based 3D SAR imaging with multi-PRF baselines. Int. Geosci. Remote Sens. Symp. 2014, 2014, 1301–1304. [Google Scholar]
- Frey, O.; Magnard, C.; Rüegg, M.; Meier, E. Focusing of airborne synthetic aperture radar data from highly nonlinear flight tracks. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1844–1858. [Google Scholar] [CrossRef] [Green Version]
- Axelsson, S.R.J. Beam characteristics of three-dimensional SAR in curved or random paths. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2324–2334. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, Y.; Dong, G.; Kuang, G. Truncated SVD-Based Compressive Sensing for Downward-Looking Three-Dimensional SAR Imaging With Uniform/Nonuniform Linear Array. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1853–1857. [Google Scholar] [CrossRef]
- Aguasca, A.; Acevo-Herrera, R.; Broquetas, A.; Mallorqui, J.J.; Fabregas, X. ARBRES: Light-weight CW/FM SAR sensors for small UAVs. Sensors 2013, 13, 3204–3216. [Google Scholar] [CrossRef] [Green Version]
- Lort, M.; Aguasca, A.; López-Martínez, C.; Marín, T.M. Initial evaluation of SAR capabilities in UAV multicopter platforms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 127–140. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Chen, J.; Wang, P.; Li, C. Sensor-oriented path planning for multiregion surveillance with a single lightweight UAV SAR. Sensors 2018, 18, 548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, S.; Member, S.; Li, Y.; Dai, D.; Wang, X. Three-Dimensional Reconstruction of Man-Made Objects Using Polarimetric Tomographic SAR. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3694–3705. [Google Scholar] [CrossRef]
- Peng, X.; Hong, W.; Wang, Y.; Tan, W.; Wu, Y. Polar Format Imaging Algorithm With Wave-Front Curvature Phase Error Compensation for Airborne DLSLA Three-Dimensional SAR. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1036–1040. [Google Scholar] [CrossRef]
- Sun, D.; Xing, S.; Li, Y.; Pang, B.; Wang, X. Sub-Aperture Partitioning Method for Three-Dimensional Wide-Angle Synthetic Aperture Radar Imaging with Non-Uniform Sampling. Electronics. 2019, 8, 629. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.; Li, D. Sparse Flight Array SAR Downward-Looking 3-D Imaging Based on Compressed Sensing. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1395–1399. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Berry, P.; Tran, H.-T. Compressive Sensing for Tomographic Imaging of a Target with a Narrowband Bistatic Radar. Sensors. 2019, 19, 5515. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Liu, M.; Wang, Z. Three-dimensional SAR imaging of sea targets with low PRF sampling. IET Radar Sonar Navig. 2018, 12, 294–300. [Google Scholar] [CrossRef]
- Hu, X.; Tong, N.; Guo, Y.; Ding, S. MIMO Radar 3-D Imaging Based on Multi-Dimensional Sparse Recovery and Signal Support Prior Information. IEEE Sens. J. 2018, 18, 3152–3162. [Google Scholar] [CrossRef]
- Zeng, J.; Lin, S.; Wang, Y.; Xu, Z. Regularization: Convergence of Iterative Half Thresholding Algorithm. IEEE Trans. SIGNAL Process. 2014, 62, 2317–2329. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Chang, X.; Member, S.; Xu, F.; Zhang, H. L 1 / 2 Regularization: A Thresholding Representation Theory and a Fast Solver. IEEE Trans. NEURAL NETWORKS Learn. Syst. 2012, 23, 1013–1027. [Google Scholar]
- Çetin, M.; Member, S.; Karl, W.C.; Member, S. Feature-Enhanced Synthetic Aperture Radar Image Formation Based on Nonquadratic Regularization. IEEE Trans. IMAGE Process. 2001, 10, 623–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoica, P.; Sel, Y. Model-order selection: A review of information criterion rules. IEEE Signal Process. Mag. 2004, 36–47. [Google Scholar] [CrossRef]
- Sun, D.; Xing, S.; Li, Y.; Dai, D. Adaptive parameter selection of SAR sparse imaging model. Journal of Remote Sensing. J. Remote Sens. 2017, 21, 579–587. [Google Scholar]
- Soltanmohammadi, E.; Member, S.; Orooji, M.; Member, S. Spectrum Sensing Over MIMO Channels Using Generalized Likelihood Ratio Tests. IEEE Signal Process. Lett. 2013, 20, 439–442. [Google Scholar] [CrossRef]
- Ash, J.; Ertin, E.; Potter, L.C.; Zelnio, E. Wide-angle synthetic aperture radar imaging: Models and algorithms for anisotropic scattering. IEEE Signal Process. Mag. 2014, 31, 16–26. [Google Scholar] [CrossRef]
A Direct 3-D Sparse Imaging Algorithm for 3-D SAR using Non-uniform Samples |
---|
|
|
|
|
|
Method | 3-D NUFFT | Austin’s | DTDSI |
---|---|---|---|
Time (s) | 6.48 | 9.66 | 15.11 |
Method | 3-D NUFFT | Austin’s | DTDSI |
---|---|---|---|
MSE | 78.35 | 1.70 | 0.16 |
Method | 3-D NUFFT | Austin’s | DTDSI |
---|---|---|---|
MSE | 119.92 | 3.11 | 0.11 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, D.; Pang, B.; Xing, S.; Li, Y.; Wang, X. Direct 3-D Sparse Imaging Using Non-Uniform Samples Without Data Interpolation. Electronics 2020, 9, 321. https://doi.org/10.3390/electronics9020321
Sun D, Pang B, Xing S, Li Y, Wang X. Direct 3-D Sparse Imaging Using Non-Uniform Samples Without Data Interpolation. Electronics. 2020; 9(2):321. https://doi.org/10.3390/electronics9020321
Chicago/Turabian StyleSun, Dou, Bo Pang, Shiqi Xing, Yongzhen Li, and Xuesong Wang. 2020. "Direct 3-D Sparse Imaging Using Non-Uniform Samples Without Data Interpolation" Electronics 9, no. 2: 321. https://doi.org/10.3390/electronics9020321
APA StyleSun, D., Pang, B., Xing, S., Li, Y., & Wang, X. (2020). Direct 3-D Sparse Imaging Using Non-Uniform Samples Without Data Interpolation. Electronics, 9(2), 321. https://doi.org/10.3390/electronics9020321