A Radio Frequency Magnetoelectric Antenna Prototyping Platform for Neural Activity Monitoring Devices with Sensing and Energy Harvesting Capabilities
Abstract
:1. Introduction
2. Test Platform
2.1. SDR-Based Approach
2.2. Receiver Prototyping
2.3. Energy Harvesting Experiment
3. Experimental Results
3.1. SDR-Based Receiver Testing
3.2. SDR-Based Energy Harvesting Demonstration
3.2.1. Power Transfer Efficiency of the ME Antenna
3.2.2. Measurements with the Energy Harvesting Chip
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Chen, X. A fluxgate magnetometer for navigation and sensing: Noise character and digital filtering. In Proceeding of the IEEE Sensors, Busan, Korea, 1–4 November 2015. [Google Scholar]
- Liu, X.; Lam, K.H.; Zhu, K.; Zheng, C.; Li, X.; Du, Y.; Liu, C.; Pong, P.W.T. Overview of Spintronic Sensors With Internet of Things for Smart Living. IEEE Trans. Magn. 2019, 55, 1–22. [Google Scholar] [CrossRef]
- He, Z.; Zhu, H.; Yu, F. A vehicle detection algorithm based on wireless magnetic sensor networks. In Proceeding of the 4th IEEE International Conference on Information Science and Technology, Shenzhen, China, 26–28 April 2014. [Google Scholar]
- Zaeimbashi, M.; Lin, H.; Dong, C.; Liang, X.; Nasrollahpour, M.; Chen, H.; Sun, N.; Matyushov, A.; He, Y.; Wang, X.; et al. NanoNeuroRFID: A Wireless Implantable Device Based on Magnetoelectric Antennas. IEEE J. Electromagn. RF Microw. Med. Biol. 2019, 3, 206–215. [Google Scholar] [CrossRef]
- Nan, T.; Hui, Y.; Rinaldi, M.; Wang, X. Self-Biased 215MHz Magnetoelectric NEMS Resonator for Ultra-Sensitive DC Magnetic Field Detection. Sci. Rep. 2013, 3, 1985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nan, T.; Lin, H.; Gao, Y.; Matyushov, A.; Yu, G.; Chen, H.; Sun, N.; Wei, S.; Wang, Z.; Li, M.; et al. Acoustically actuated ultra-compact NEMS magnetoelectric antennas. Nat. Commun. 2017, 8, 296. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zardareh, S.Z.; Yang, X.; Nan, T.X.; Zhou, Z.Y.; Onabajo, M.; Liu, M.; Aronow, A.; Mahalingam, K.; Howe, B.M.; et al. Significantly Enhanced Inductance and Quality Factor of GHz Integrated Magnetic Solenoid Inductors With FeGaB/Al2O3 Multilayer Films. IEEE Trans. Electron Devices 2014, 61, 1470–1476. [Google Scholar]
- Feld, D.; Parker, R.; Ruby, R.; Bradley, P.; Dong, S. After 60 years: A new formula for computing quality factor is warranted. In Proceeding of the 2008 IEEE Ultrasonics Symposium, Beijing, China, 2–5 November 2008. [Google Scholar]
- Zaeimbashi, M.; Nasrollahpour, M.; Khalifa, A.; Romano, A.; Liang, X.; Chen, H.; Sun, N.; Matyushov, A.; Lin, H.; Dong, C.; et al. Ultra-compact Dual-band Smart NEMS Magnetoelectric Antennas for Simultaneous Wireless Energy Harvesting and Magnetic Field Sensing. bioRxiv 2020, in press. [Google Scholar]
- Nasrollahpour, M.; Romano, A.; Zaeimbashi, M.; Liang, X.; Chen, H.; Sun, N.; Emam, S.; Onabajo, M.; Sun, N. Integration of a novel CMOS-compatible magnetoelectric antenna with a low-noise amplifier and a tunable input matching. Analog. Integr. Circuits Signal Process. 2020, 105, 407–415. [Google Scholar] [CrossRef]
- Wenger, C.; Salvador, R.; Basser, P.J.; Miranda, P.C. The electric field distribution in the brain during TTFields therapy and its dependence on tissue dielectric properties and anatomy: A computational study. Phys. Med. Biol. 2015, 60, 7339–7357. [Google Scholar] [CrossRef] [PubMed]
- Lok, E.; San, P.; Hua, V.; Phung, M.; Wong, E.T. Analysis of physical characteristics of Tumor Treating Fields for human glioblastoma. Cancer Med. 2017, 6, 1286–1300. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, H.; Onabajo, M.; Kvartenko, V.; Coxe, R.; Weber, T. An Optimization Platform for Digital Predistortion of Power Amplifiers. IEEE Des. Test 2015, 33, 49–58. [Google Scholar] [CrossRef]
- Martos-Repath, I.; Mittal, A.; Zaeimbashi, M.; Das, D.; Sun, N.X.; Shrivastava, A.; Onabajo, M. Modeling of magnetoelectric antennas for circuit simulations in magnetic sensing applications. In Proceedings of the 63rd International Midwest Symposium on Circuits and Systems (MWSCAS 2020), Springfield, MA, USA, 9–12 August 2020. [Google Scholar]
- Zitouni, R.; George, L. Output power analysis of a software defined radio. In Proceeding of the IEEE Radio and Antenna Days of the Indian Ocean (RADIO 2016), St. Gilles-les-Bains, Reunion, 10–13 October 2016. [Google Scholar]
- Khalifa, A.; Liu, Y.; Karimi, Y.; Wang, Q.; Eisape, A.; Stanacevic, M.; Thakor, N.; Bao, Z.; Etienne-Cummings, R. The Microbead: A 0.009 mm3 Implantable Wireless Neural Stimulator. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 971–985. [Google Scholar] [CrossRef] [PubMed]
- Ahn, D.; Ghovanloo, M. Optimal Design of Wireless Power Transmission Links for Millimeter-Sized Biomedical Implants. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Yang, Y.; Brandon, A.; Postma, J.; Gong, S. Radio 488 frequency wireless power transfer to chip-scale apparatuses. In Proceedings of the MTT-S International 489 Microwave Symposium (IMS 2016), San Francisco, CA, USA, 22–27 May 2016. [Google Scholar]
- Kuo, N.-C.; Zhao, B.; Niknejad, A. Equation-Based Optimization for Inductive Power Transfer to a Miniature CMOS Rectenna. IEEE Trans. Microw. Theory Tech. 2018, 66, 2393–2408. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
ME sensor frequency | 135 MHz |
ME antenna dimensions | 250 µm × 174 µm |
Modulation type | AM |
Modulated signal frequency | 1 kHz |
Tx–Rx separation | 1 m |
SDR Rx gain | 49–70 dB |
SDR baseband sampling rate | 1 MHz |
CPU utilization rate | 35% |
Carrier signal power at the spectrum analyzer | −43.5 dBm |
Modulated signal power at the spectrum analyzer | −103.3 dBm |
Reconstructed signal power at the SDR with 61 dB Rx gain | −109.8 dBm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, D.; Nasrollahpour, M.; Xu, Z.; Zaeimbashi, M.; Martos-Repath, I.; Mittal, A.; Khalifa, A.; Cash, S.S.; Shrivastava, A.; Sun, N.X.; et al. A Radio Frequency Magnetoelectric Antenna Prototyping Platform for Neural Activity Monitoring Devices with Sensing and Energy Harvesting Capabilities. Electronics 2020, 9, 2123. https://doi.org/10.3390/electronics9122123
Das D, Nasrollahpour M, Xu Z, Zaeimbashi M, Martos-Repath I, Mittal A, Khalifa A, Cash SS, Shrivastava A, Sun NX, et al. A Radio Frequency Magnetoelectric Antenna Prototyping Platform for Neural Activity Monitoring Devices with Sensing and Energy Harvesting Capabilities. Electronics. 2020; 9(12):2123. https://doi.org/10.3390/electronics9122123
Chicago/Turabian StyleDas, Diptashree, Mehdi Nasrollahpour, Ziyue Xu, Mohsen Zaeimbashi, Isabel Martos-Repath, Ankit Mittal, Adam Khalifa, Sydney S. Cash, Aatmesh Shrivastava, Nian X. Sun, and et al. 2020. "A Radio Frequency Magnetoelectric Antenna Prototyping Platform for Neural Activity Monitoring Devices with Sensing and Energy Harvesting Capabilities" Electronics 9, no. 12: 2123. https://doi.org/10.3390/electronics9122123
APA StyleDas, D., Nasrollahpour, M., Xu, Z., Zaeimbashi, M., Martos-Repath, I., Mittal, A., Khalifa, A., Cash, S. S., Shrivastava, A., Sun, N. X., & Onabajo, M. (2020). A Radio Frequency Magnetoelectric Antenna Prototyping Platform for Neural Activity Monitoring Devices with Sensing and Energy Harvesting Capabilities. Electronics, 9(12), 2123. https://doi.org/10.3390/electronics9122123