Congestion Probabilities in a Multi-Cluster C-RAN Servicing a Mixture of Traffic Sources
Abstract
:1. Introduction
2. The SC-MC Model—A Review
- Step 1
- Step 2
- Step 3
3. Proposed g-SC-MC Model
3.1. Description of the Analytical Model
3.2. BF Method for the Computation of Congestion Probabilities
3.3. Convolution Algorithm for the Computation of Congestion Probabilities
- Step 1
- Step 2
- Step 3
4. Evaluation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
- Step 1
- For z = 1, m = 1 and j =1, …, 3 compute assuming that = 1.0:
- For z = 1, m = 2 and j = 1, …, 3 compute assuming that = 0.1:
- For z = 2, m = 1 and j = 1, …, 4 compute assuming that = 0.8 and :
- Step 2
- Step 3
References
- Checko, A.; Christiansen, H.; Yan, Y.; Scolari, L.; Kardaras, G.; Berger, M.; Dittmann, L. Cloud RAN for mobile networks—A technology overview. IEEE Commun. Surv. Tutor. 2015, 17, 405–426. [Google Scholar] [CrossRef] [Green Version]
- Mukhlif, F.; Noordin, K.; Mansoor, A.; Kasirun, Z. Green transmission of C-RAN based on SWIPT in 5G: A review. Wirel. Netw. 2019, 25, 2621–2649. [Google Scholar] [CrossRef]
- Stasiak, M.; Głąbowski, M.; Wisniewski, A.; Zwierzykowski, P. Modeling and Dimensioning of Mobile Networks: From GSM to LTE; John Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Moscholios, I.D.; Logothetis, M.D. Efficient Multirate Teletraffic Loss Models Beyond Erlang; John Wiley & IEEE Press: Hoboken, NJ, USA, 2019. [Google Scholar]
- Assimakopoulos, P.; Zou, J.; Habel, K.; Elbers, J.; Jungnickel, V.; Gomes, N. A converged evolved Ethernet fronthaul for the 5G era. IEEE J. Sel. Areas Commun. 2018, 36, 2528–2537. [Google Scholar] [CrossRef] [Green Version]
- Al-Turjman, F.; Ever, E.; Zahmatkesh, H. Small cells in the forthcoming 5G/IoT: Traffic modelling and deployment overview. IEEE Commun. Surv. Tuts. 2019, 21, 28–65. [Google Scholar] [CrossRef]
- Rastegar, S.; Abbasfar, A.; Shah-Mansouri, V. Rule caching in SDN-enabled base stations supporting massive IoT devices with bursty traffic. IEEE Internet Things 2020, 7, 8917–8931. [Google Scholar] [CrossRef]
- Moscholios, I.; Logothetis, M. The Erlang multirate loss model with Batched Poisson arrival processes under the bandwidth reservation policy. Comp. Commun. 2010, 33, S167–S179. [Google Scholar] [CrossRef]
- Li, W.; Kouvatsos, D.; Fretwell, R. Towards time domain invariant QoS measures for queues with correlated traffic. J. Comput. Syst. Sci. 2015, 81, 132–144. [Google Scholar] [CrossRef]
- Rachad, J.; Nasri, R.; Decreusefond, L. How to dimension radio resources when users are distributed on roads modeled by Poisson line process. In Proceedings of the IEEE VTC (fall), Honolulu, HI, USA, 22–25 September 2019. [Google Scholar]
- Moscholios, I.; Vassilakis, V.; Sarigiannidis, P. Performance modelling of a multirate loss system with Batched Poisson arrivals under a probabilistic threshold policy. IET Netw. 2018, 7, 242–247. [Google Scholar] [CrossRef]
- Ucar, I.; Hernandez, A.; Serrano, P.; Azcorra, A. Design and analysis of 5G scenarios with simmer: An R package for fast DES prototyping. IEEE Commun. Mag. 2018, 56, 145–151. [Google Scholar] [CrossRef]
- Kamphorst, B.; Zwart, B. Uniform asymptotics for compound Poisson processes with regularly varying jumps and vanishing drift. Stoch. Process. Appl. 2019, 129, 572–603. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zhou, S.; Gong, J.; Niu, Z.; Xu, S. Statistical multiplexing gain analysis of heterogeneous virtual base station pools in cloud radio access networks. IEEE Trans. Wirel. Commun. 2016, 15, 5681–5694. [Google Scholar] [CrossRef] [Green Version]
- Chousainov, I.-A.; Moscholios, I.; Kaloxylos, A.; Logothetis, M. Performance evaluation in single or multi-cluster C-RAN supporting quasi-random traffic. J. Commun. Softw. Syst. 2020, 16, 170–179. [Google Scholar] [CrossRef]
- Moscholios, I.; Logothetis, M.; Koukias, M. An ON-OFF multirate loss model of finite sources. IEICE Trans. Commun. 2007, E90-B, 1608–1619. [Google Scholar] [CrossRef]
- Vassilakis, V.; Moscholios, I.; Logothetis, M. Call-level performance modelling of elastic and adaptive service-classes with finite population. IEICE Trans. Commun. 2008, E91-B, 151–162. [Google Scholar] [CrossRef]
- Głąbowski, M.; Stasiak, M.; Wisniewski, A.; Zwierzykowski, P. Blocking probability calculation for cellular systems with WCDMA radio interface servicing PCT1 and PCT2 multirate traffic. IEICE Trans. Commun. 2009, E92-B, 1156–1165. [Google Scholar]
- Vardakas, J.; Moscholios, I.; Logothetis, M.; Stylianakis, V. An analytical approach for dynamic wavelength allocation in WDM-TDMA PONs servicing ON-OFF traffic. IEEE/OSA J. Opt. Commun. Netw. 2011, 3, 347–358. [Google Scholar] [CrossRef]
- Huang, Q.; Ko, K.; Iversen, V. A new convolution algorithm for loss probability analysis in multiservice networks. Perf. Eval. 2011, 68, 76–87. [Google Scholar] [CrossRef]
- Sobieraj, M.; Stasiak, M.; Weissenberg, J.; Zwierzykowski, P. Analytical model of the single threshold mechanism with hysteresis for multi-service networks. IEICE Trans. Commun. 2012, E95-B, 120–132. [Google Scholar] [CrossRef]
- Stasiak, M.; Parniewicz, D.; Zwierzykowski, P. Traffic engineering for multicast connections in multiservice cellular network. IEEE Trans. Indust. Inf. 2013, 9, 262–270. [Google Scholar]
- Moscholios, I.; Kallos, G.; Vassilakis, V.; Logothetis, M.; Koukias, M. Congestion probabilities in W-CDMA networks supporting calls of finite sources. In Proceedings of the HETNETs, Ilkley, West Yorkshire, UK, 11–13 November 2013. [Google Scholar]
- Hanczewski, S.; Stasiak, M.; Zwierzykowski, P. A new model of the soft handover mechanism in the UMTS network. In Proceedings of the CSNDSP, Manchester, UK, 23–25 July 2014. [Google Scholar]
- Hanczewski, S.; Stasiak, M.; Zwierzykowski, P. Modelling of the access part of a multi-service mobile network with service priorities. EURASIP J. Wirel. Commun. Netw. 2015, 2015, 323. [Google Scholar] [CrossRef] [Green Version]
- Moscholios, I.; Logothetis, M.; Vardakas, J.; Boucouvalas, A. Performance metrics of a multirate resource sharing teletraffic model with finite sources under both the threshold and bandwidth reservation policies. IET Netw. 2015, 4, 195–208. [Google Scholar] [CrossRef]
- Casares-Giner, V. Some teletraffic issues in optical burst switching with burst segmentation. Electron. Lett. 2016, 52, 941–943. [Google Scholar] [CrossRef]
- Moscholios, I.; Vassilakis, V.; Logothetis, M.; Boucouvalas, A. A probabilistic threshold-based bandwidth sharing policy for wireless multirate loss networks. IEEE Wirel. Commun. Lett. 2016, 5, 304–307. [Google Scholar] [CrossRef] [Green Version]
- Moscholios, I.; Vassilakis, V.; Logothetis, M.; Boucouvalas, A. State-dependent bandwidth sharing policies for wireless multirate loss networks. IEEE Trans. Wirel. Commun. 2017, 16, 5481–5497. [Google Scholar] [CrossRef] [Green Version]
- Moscholios, I.; Logothetis, M.; Shioda, S. Performance evaluation of multirate loss systems supporting cooperative users with a probabilistic behaviour. IEICE Trans. Commun. 2017, E100-B, 1778–1788. [Google Scholar] [CrossRef]
- Sagkriotis, S.; Pantelis, S.; Moscholios, I.; Vassilakis, V. Call blocking probabilities in a two-link multi rate loss System for Poisson traffic. IET Netw. 2018, 7, 233–241. [Google Scholar] [CrossRef]
- Hanczewski, S.; Horiushkina, A.; Stasiak, M.; Weissenberg, J. The analytical model of 5G networks. In Proceedings of the IEICE ICTF, Bydgoszcz, Poland, 11–13 September 2019. [Google Scholar]
- Chousainov, I.-A.; Moscholios, I.; Kaloxylos, A.; Logothetis, M. Performance evaluation of a C-RAN supporting quasi-random traffic. In Proceedings of the IEEE Softcom, Split, Croatia, 19–21 September 2019. [Google Scholar]
- Panagoulias, P.; Moscholios, I. Congestion probabilities in the X2 link of LTE networks. Telecommun. Syst. 2019, 71, 585–599. [Google Scholar] [CrossRef]
- Głąbowski, M.; Kaliszan, A.; Stasiak, M. A Palm-Jacobaeus loss formula for multi-service systems with separated resources. Appl. Sci. 2020, 10, 4019. [Google Scholar] [CrossRef]
- Głąbowski, M.; Sobieraj, M.; Stasiak, M.; Stasiak, D. Modeling of Clos switching structures with dynamically variable number of active switches in the spine stage. Electronics 2020, 9, 1073. [Google Scholar] [CrossRef]
- Kaliszan, A.; Głąbowski, M.; Stasiak, M. Generalized convolution algorithm for modelling state dependent systems. IET Circuits Devices Syst. 2014, 8, 378–386. [Google Scholar] [CrossRef]
- Kaliszan, A.; Stasiak, M. The possibilities and limitations of the application of the convolution algorithms for modeling network systems. In Proceedings of the 24th International Conference on Computer Networks, Ladek Zdroj, Poland, 20–23 June 2017. [Google Scholar]
- Moscholios, I.; Vassilakis, V.; Bouloukakis, G.; Panagoulias, P.; Logothetis, M. A convolution algorithm for a multirate loss system with Poisson arrivals and a threshold call admission policy. In Proceedings of the CSNDSP, Budapest, Hungary, 18–20 July 2018. [Google Scholar]
- Głąbowski, M.; Kaliszan, A.; Stasiak, M. Asymmetric convolution algorithm for full-availability group with bandwidth reservation. In Proceedings of the Asia-Pacific Conference on Communications, Busan, Korea, 31 August–1 September 2006. [Google Scholar]
- Głąbowski, M.; Kaliszan, A.; Stasiak, M. Asymmetric convolution algorithm for blocking probability calculation in full-availability group with bandwidth reservation. IET Circuits Devices Syst. 2008, 2, 87–94. [Google Scholar] [CrossRef]
- Sagkriotis, S.; Moscholios, I. Evaluation of convolution algorithms in the Erlang multirate loss model under the bandwidth reservation policy. In Proceedings of the IEICE ICTF, Poznan, Poland, 4–6 July 2017. [Google Scholar]
- Głąbowski, M.; Kaliszan, A.; Stasiak, M. On the application of the asymmetric convolution algorithm in modeling of full-availability group with bandwidth reservation. In Proceedings of the 20th International Teletraffic Congress, LNCS 4516, Ottawa, ON, Canada, 17–21 June 2007. [Google Scholar]
- Głąbowski, M.; Kaliszan, A.; Stasiak, M. Convolution algorithm for state-passage probabilities calculation in limited availability group. In Proceedings of the AICT, Athens, Greece, 8–13 June 2008. [Google Scholar]
- Vardakas, J.; Moscholios, I.; Logothetis, M.; Stylianakis, V. Performance analysis of OCDMA PONs supporting multi-rate bursty traffic. IEEE Trans. Commun. 2013, 61, 3374–3384. [Google Scholar] [CrossRef]
- Hanczewski, S.; Kaliszan, A.; Stasiak, M. Convolution model of a queueing system with the cFIFO service discipline. Mob. Inf. Syst. 2016, 2016, 1–15. [Google Scholar] [CrossRef]
- Shortle, J.; Thompson, J.; Gross, D.; Harris, C. Fundamentals of Queueing Theory; John Wiley: Hoboken, NJ, USA, 2018. [Google Scholar]
- Simscript III. Available online: http://www.simscript.com (accessed on 11 December 2020).
- Jain, R. The Art of Computer Systems Performance Analysis; John Wiley: Hoboken, NJ, USA, 1991. [Google Scholar]
- Robinson, S. A statistical process control approach to selecting a warm-up period for a discrete-event simulation. Eur. J. Oper. Res. 2007, 176, 332–346. [Google Scholar] [CrossRef]
- Kallos, G.; Vassilakis, V.; Moscholios, I.; Logothetis, M. Performance modelling of W-CDMA networks supporting elastic and adaptive traffic. In Proceedings of the 4th HET-NETs, Ilkley, UK, 11–13 September 2006. [Google Scholar]
- Moscholios, I.; Vardakas, J.; Logothetis, M.; Boucouvalas, A. Congestion probabilities in a batched Poisson multirate loss model supporting elastic and adaptive traffic. Ann. Telecommun. 2013, 68, 327–344. [Google Scholar] [CrossRef]
- Moscholios, I.; Logothetis, M.; Vardakas, J.; Boucouvalas, A. Congestion probabilities of elastic and adaptive calls in Erlang-Engset multirate loss models under the threshold and bandwidth reservation policies. Comput. Netw. 2015, 92, 1–23. [Google Scholar] [CrossRef]
- Głąbowski, M.; Kaliszan, A.; Stasiak, M. Modelling overflow systems with distributed secondary resources. Comput. Netw. 2016, 108, 171–183. [Google Scholar] [CrossRef]
- Hanczewski, S.; Stasiak, M.; Weissenberg, J. Queueing model of a multi-service system with elastic and adaptive traffic. Comput. Netw. 2018, 147, 146–161. [Google Scholar] [CrossRef]
- Moscholios, I.; Logothetis, M.; Nikolaropoulos, P. Engset multi-rate state-dependent loss models. Perf. Eval. 2005, 59, 247–277. [Google Scholar] [CrossRef]
- Głąbowski, M.; Sobieraj, M. Analytical modelling of multiservice switching networks with multiservice sources and resource management mechanisms. Telecommun. Syst. 2017, 66, 559–578. [Google Scholar] [CrossRef] [Green Version]
- Głąbowski, M.; Walkowiak, P. Simulation studies of communication systems with mutual overflows and threshold mechanisms. In Proceedings of the CoBCom, Graz, Austria, 7–9 July 2018. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chousainov, I.-A.; Moscholios, I.D.; Sarigiannidis, P.G. Congestion Probabilities in a Multi-Cluster C-RAN Servicing a Mixture of Traffic Sources. Electronics 2020, 9, 2120. https://doi.org/10.3390/electronics9122120
Chousainov I-A, Moscholios ID, Sarigiannidis PG. Congestion Probabilities in a Multi-Cluster C-RAN Servicing a Mixture of Traffic Sources. Electronics. 2020; 9(12):2120. https://doi.org/10.3390/electronics9122120
Chicago/Turabian StyleChousainov, Iskanter-Alexandros, Ioannis D. Moscholios, and Panagiotis G. Sarigiannidis. 2020. "Congestion Probabilities in a Multi-Cluster C-RAN Servicing a Mixture of Traffic Sources" Electronics 9, no. 12: 2120. https://doi.org/10.3390/electronics9122120
APA StyleChousainov, I.-A., Moscholios, I. D., & Sarigiannidis, P. G. (2020). Congestion Probabilities in a Multi-Cluster C-RAN Servicing a Mixture of Traffic Sources. Electronics, 9(12), 2120. https://doi.org/10.3390/electronics9122120