# FPGA Implementation of Some Second Round NIST Lightweight Cryptography Candidates

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Background

#### 2.1. Authenticated Encryption with Associated Data

#### 2.2. GMU LWC Interface

## 3. Implemented Authenticated Ciphers

#### 3.1. Preliminaries

#### 3.2. Hardware Design Principles

#### 3.3. LOTUS and LOCUS

#### 3.4. LOTUS

#### 3.5. LOCUS

#### Brief Description of tweGift-64

#### 3.6. ESTATE

#### Brief Description of AES

- tweAES-8: The version of tweAES with 8-bit datapath uses eight clock cycles to compute the AddRoundKey and SubstitutionBytes, ShiftRows takes one clock cycle, and finally MixColums is performed in four clock cycles. Thus, the latency per round is 21 clock cycles, and ten rounds take 210 clock cycles and 16 additional clock cycles to output the encrypted block, giving a total latency of 226 clock cycles. This architecture uses only one Sbox. As the last round does not include the MixColumns transformation, to maintain the uniformity of the design, the state register is disabled, avoiding compute the MixColums in the 10-th round.
- tweAES-32: The computation of the round is column-wise, so each round takes four clock cycles as the ShiftRows and MixColumns are performed in parallel, only selecting the correct bytes from the state to compute the MixColums. Four additional clock cycles are used to give the output. Thus, the total latency of tweAES is 44 clock cycles. This implementation uses four Sboxes.
- tweGift-128: Both implementations, 8-bit datapath and 32-bit datapath, use the same architecture; the only changes are that for 32 bits it uses eight Sboxes (4-bit Sbox) while for 8 bits only two Sboxes are used. The permutation step takes one clock cycle for both cases and the computation of the round is 5 and 17 clock cycles for 32-bit datapath and 8-bit datapath, respectively. Gift-128 executes 40 rounds in 32 bits, so the total latency is 204 clock cycles, and for 8 bits it is 696 clock cycles.

#### 3.7. COMET

#### 3.8. Oribatida

## 4. Results

#### Discussion of Results

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Shay, G.; Ashwin, J.; Mridul, N. COMET: COunter Mode Encryption whith Authentication Tag. 2019. Available online: https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates (accessed on 11 November 2020).
- Chakraborti, A.; Datta, N.; Jha, A.; Mancillas-López, C.; Nandi, M.; Sasaki, Y. ESTATE: A Lightweight and Low Energy Authenticated Encryption Mode. IACR Trans. Symmetric Cryptol.
**2020**, 2020, 350–389. [Google Scholar] [CrossRef] - Chakraborti, A.; Datta, N.; Jha, A.; Lopez, C.M.; Nandi, M.; Sasaki, Y. LOTUS-AEAD and LOCUS-AEAD. Lightweight Cryptography, Round 2 Candidates. 2019. Available online: https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/lotus-aead-and-locus-aead-spec.pdf (accessed on 11 November 2020).
- Bhattacharjee1, A.; List, E.; López, C.M.; Nandi, M. The Oribatida Family of Lightweight Authenticated Encryption Schemes. 2019. Available online: https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/oribatida-spec-round2.pdf (accessed on 11 November 2020).
- Rezvani, B.; Coleman, F.; Sachin, S.; Diehl, W. Hardware Implementations of NIST Lightweight Cryptographic Candidates: A First Look. Cryptology ePrint Archive, Report 2019/824. 2019. Available online: https://eprint.iacr.org/2019/824 (accessed on 11 November 2020).
- Dworkin, M.J. SP 800-38A 2001 Edition. In Recommendation for Block Cipher Modes of Operation: Methods and Techniques; Technical Report; NIST: Gaithersburg, MD, USA, 2001. [Google Scholar]
- Dworkin, M.J. SP 800-38B. In Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication; Technical Report; NIST: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Rogaway, P. Efficient Instantiations of Tweakable Blockciphers and Refinements to Modes OCB and PMAC. In Advances in Cryptology—ASIACRYPT 2004, Proceedings of the 10th International Conference on the Theory and Application of Cryptology and Information Security, Jeju Island, Korea, 5–9 December 2004; Lee, P.J., Ed.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3329, pp. 16–31. [Google Scholar] [CrossRef][Green Version]
- Kaps, J.P.; Diehl, W.; Tempelmeier, M.; Homsirikamol, E.; Gaj, K. Hardware API for Lightweight Cryptography. Tech. Report Oct 2019. 2019. Available online: https://cryptography.gmu.edu/athena/LWC/LWC_HW_API.pdf (accessed on 11 November 2020).
- Chakraborti, A.; Datta, N.; Jha, A.; Mancillas-López, C.; Nandi, M.; Sasaki, Y. INT-RUP Secure Lightweight Parallel AE Modes. IACR Trans. Symmetric Cryptol.
**2019**, 2019, 81–118. [Google Scholar] [CrossRef] - Minematsu, Kazhuhiko. AES-OTR v3.1, Cited September 2020. Available online: https://competitions.cr.yp.to/round3/aesotrv31.pdf (accessed on 11 November 2020).
- Chakraborti, A.; Datta, N.; Jha, A.; Lopez, C.M.; Nandi, M.; Sasaki, Y. Elastic-Tweak: A Framework for Short Tweak Tweakable Block Cipher. Cryptology ePrint Archive, Report 2019/440. 2019. Available online: https://eprint.iacr.org/2019/440 (accessed on 11 November 2020).
- Banik, S.; Pandey, S.K.; Peyrin, T.; Sasaki, Y.; Sim, S.M.; Todo, Y. GIFT: A Small Present—Towards Reaching the Limit of Lightweight Encryption. In Cryptographic Hardware and Embedded Systems—CHES 2017, Proceedings of the 19th International Conference, Taipei, Taiwan, 25–28 September 2017; Fischer, W., Homma, N., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2017; Volume 10529, pp. 321–345. [Google Scholar] [CrossRef]
- Chakraborti, A.; Datta, N.; Jha, A.; Lopez, C.M.; Nandi, M.; Sasaki, Y. ESTATE. Lightweight Cryptography, Round 2 Candidates. 2019. Available online: https://csrc.nist.gov/CSRC/media/Events/lightweight-cryptography-workshop-2019/documents/papers/estate-authenticated-encryption-mode-lwc2019.pdf (accessed on 11 November 2020).
- Banik, S.; Bogdanov, A.; Luykx, A.; Tischhauser, E. SUNDAE: Small Universal Deterministic Authenticated Encryption for the Internet of Things. IACR Trans. Symmetric Cryptol.
**2018**, 2018, 1–35. [Google Scholar] [CrossRef] - Daemen, J.; Rijmen, V. The Design of Rijndael: AES—The Advanced Encryption Standard; Information Security and Cryptography; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar] [CrossRef]
- Moradi, A.; Poschmann, A.; Ling, S.; Paar, C.; Wang, H. Pushing the Limits: A Very Compact and a Threshold Implementation of AES. In Advances in Cryptology—EUROCRYPT 2011, Proceedings of the 30th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Tallinn, Estonia, 15–19 May 2011; Paterson, K.G., Ed.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6632, pp. 69–88. [Google Scholar] [CrossRef][Green Version]
- Rouvroy, G.; Standaert, F.; Quisquater, J.; Legat, J. Compact and Efficient Encryption/Decryption Module for FPGA Implementation of the AES Rijndael Very Well Suited for Small Embedded Applications. In Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04), Las Vegas, NV, USA, 5–7 April 2004; IEEE Computer Society: Washington, DC, USA, 2004; Volume 2, pp. 583–587. [Google Scholar] [CrossRef]
- Chakraborti, A.; Datta, N.; Nandi, M.; Yasuda, K. Beetle Family of Lightweight and Secure Authenticated Encryption Ciphers. IACR Trans. Cryptogr. Hardw. Embed. Syst.
**2018**, 2018, 218–241. [Google Scholar] [CrossRef] - Beaulieu, R.; Shors, D.; Smith, J.; Treatman-Clark, S.; Weeks, B.; Wingers, L. The SIMON and SPECK lightweight block ciphers. In Proceedings of the 52nd Annual Design Automation Conference (DAC), San Francisco, CA, USA, 7–11 June 2015; pp. 1–6. [Google Scholar] [CrossRef]

**Figure 1.**Top-level block diagram of LWC core (based on the scheme found at [9]). sw, external key width; w, external data width; ccsw, internal key width; ccw, internal data width.

**Figure 11.**Encryption version of Oribatida AEAD Algorithm, where (

**a**) is the nonce/AD stage and (

**b**) is the encryption stage (scheme based on the one found in [4]).

Encoding | Segment |
---|---|

0001 | Associated data (AD) |

0100 | Message blocks (PT) |

0101 | Decrypted message (CT) |

1000 | Tag (T) |

1100 | Key (K) |

1101 | Npub |

0111 | Hash message |

1001 | Hash value |

**Table 2.**Utilization of resources, throughput and TPA for implemented architectures on the xc7a12tcsg325-3 FPGA.

Mode | LUT | FF | Slices | Freq | Clock Cycles | Throughput | TPA |
---|---|---|---|---|---|---|---|

(MHz) | per Block | E/D | (Mbps/LUT) | ||||

LOCUS_32 | 1846 | 1005 | 521 | 166.04 | 114 | 93.21 | 0.050 |

LOTUS_32 | 1525 | 908 | 454 | 132.45 | 114 | 74.36 | 0.049 |

ESTATE-AES_32 | 1359 | 733 | 420 | 202.02 | 88 | 293.85 | 0.216 |

ESTATE-AES_8 | 797 | 416 | 228 | 227.27 | 552 | 57.21 | 0.072 |

ESTATE-Gift_32 | 1055 | 869 | 324 | 233.97 | 408 | 73.40 | 0.070 |

ESTATE-Gift_8 | 821 | 558 | 248 | 259.74 | 1392 | 23.88 | 0.029 |

COMET_8 | 1052 | 1031 | 346 | 190.33 | 297 | 92.47 | 0.088 |

COMET_32 | 1737 | 1551 | 565 | 196.85 | 70 | 427.40 | 0.246 |

Oribatida-256_256 | 1432 | 1319 | 465 | 246.24 | 137 | 230.06 | 0.161 |

**Table 3.**Overhead in resources for complete design (LWC + CryptoCore) compared with CryptoCore alone. %Usage is the percentage of utilization of available resources on the xc7a12tcsg325-3 FPGA.

Complete Design | Mode Only | |||||
---|---|---|---|---|---|---|

Mode | LWC + CryptoCore | CryptoCore | Overhead | |||

LUT/%Usage | FF/%Usage | LUT | FF | LUT | FF | |

LOCUS | 1846/23.07 | 1005/6.28 | 1640 | 956 | 195 | 52 |

LOTUS | 1525/18.77 | 908/5.67 | 1327 | 854 | 183 | 52 |

ESTATE-AES_32 | 1359/16.99 | 733/4.58 | 1065 | 505 | 294 | 228 |

ESTATE-AES_8 | 797/9.96 | 416/2.60 | 587 | 344 | 209 | 72 |

ESTATE-Gift_32 | 1055/13.19 | 869/5.43 | 788 | 625 | 267 | 244 |

ESTATE-Gift_8 | 821/10.26 | 558/3.49 | 535 | 479 | 286 | 79 |

COMET_8 | 1052/13.15 | 1031/6.44 | 803 | 951 | 249 | 80 |

COMET_32 | 1737/21.71 | 1551/9.69 | 1462 | 1451 | 275 | 100 |

Oribatida | 1432/17.90 | 1319/8.24 | 1248 | 1172 | 184 | 147 |

Mode | LUTs | Ranking | Freq | Throughput | Ranking | TPA | Ranking |
---|---|---|---|---|---|---|---|

- | - | LUTs | (MHz) | E/D Mbps | Thr. | Mbps/LUT | TPA |

ASCON-AEAD [5] | 1898 | 11 | 263.00 | 1683.2 | 1 | 0.887 | 1 |

COMET-AES [5] | 2753 | 14 | 251.00 | 1606.40 | 2 | 0.584 | 2 |

Gift-COFB [5] | 1932 | 12 | 263.00 | 635.20 | 3 | 0.329 | 3 |

COMET_32 | 1737 | 9 | 196.85 | 427.40 | 5 | 0.246 | 4 |

ESTATE-AES_32 | 1359 | 6 | 202.02 | 293.85 | 6 | 0.216 | 5 |

Oribatida-256_256 | 1432 | 7 | 246.24 | 230.06 | 8 | 0.161 | 6 |

SpoC [5] | 1172 | 5 | 268.00 | 154.50 | 9 | 0.132 | 7 |

COMET-CHAM [5] | 2214 | 13 | 201.00 | 282.70 | 7 | 0.128 | 8 |

Schwaemm [5] | 4313 | 15 | 106.00 | 521.80 | 4 | 0.121 | 9 |

COMET_8 | 1052 | 3 | 190.33 | 92.47 | 10 | 0.088 | 10 |

ESTATE-AES_8 | 797 | 1 | 227.27 | 57.21 | 14 | 0.072 | 11 |

ESTATE-Gift_32 | 1055 | 4 | 233.97 | 73.40 | 12 | 0.070 | 12 |

LOTUS | 1530 | 8 | 132.013 | 74.11 | 11 | 0.048 | 13 |

LOCUS | 1835 | 10 | 121.951 | 68.46 | 13 | 0.037 | 14 |

ESTATE-Gift_8 | 821 | 2 | 259.74 | 23.88 | 15 | 0.029 | 15 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ovilla-Martínez, B.; Mancillas-López, C.; Martínez-Herrera, A.F.; Bernal-Gutiérrez, J.A. FPGA Implementation of Some Second Round NIST Lightweight Cryptography Candidates. *Electronics* **2020**, *9*, 1940.
https://doi.org/10.3390/electronics9111940

**AMA Style**

Ovilla-Martínez B, Mancillas-López C, Martínez-Herrera AF, Bernal-Gutiérrez JA. FPGA Implementation of Some Second Round NIST Lightweight Cryptography Candidates. *Electronics*. 2020; 9(11):1940.
https://doi.org/10.3390/electronics9111940

**Chicago/Turabian Style**

Ovilla-Martínez, Brisbane, Cuauhtemoc Mancillas-López, Alberto F. Martínez-Herrera, and José A. Bernal-Gutiérrez. 2020. "FPGA Implementation of Some Second Round NIST Lightweight Cryptography Candidates" *Electronics* 9, no. 11: 1940.
https://doi.org/10.3390/electronics9111940