EM Modelling of Monostatic RCS for Different Complex Targets in the Near-Field Range: Experimental Evaluation for Traffic Applications
Abstract
:1. Introduction
2. RCS Measurement and Modelling Considerations
2.1. Theoretical Considerations
2.2. EM Modelling Techniques
2.3. Measurement Setup
3. Monostatic RCS of Simple Targets in Near-Field Conditions to Calibrate the Measurement Setup
3.1. Metallic Flat
3.2. Metallic Rectangular Box
4. Monostatic RCS of Complex Targets in Near-Field Conditions
4.1. Cavity Structure
4.2. Metallic EBG Structure
5. Monostatic RCS of an Airplane in Near-Field Conditions
6. Human Body
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Polka, L.; Birtcher, C.; Balanis, C. RCS measurements of plate geometries with theoretical verification. In Proceedings of the Antennas and Propagation Society Symposium 1991 Digest, Volondon, ON, Canada, 24–28 June 1991; pp. 1078–1081. [Google Scholar]
- Maamria, T.; Kimouche, H. Investigation of monostatic RCS measurement for simple and complex shapes at 9.4 GHz. In Proceedings of the 2015 4th International Conference on Electrical Engineering (ICEE), Boumerdes, Algeria, 13–15 December 2015; pp. 1–5. [Google Scholar]
- Borkar, V.; Ghosh, A.; Singh, R.; Chourasia, N. Radar Cross-section Measurement Techniques. Def. Sci. J. 2010, 60, 204–212. [Google Scholar] [CrossRef]
- Shen, X.-J.; Chen, X.; Zou, Y.-Q.; Zhang, Y.-M. Time-Domain Planar Near-Field Measurement Simulation for Wideband RCS and Antenna. In Proceedings of the 2007 IEEE Radar Conference, Boston, MA, USA, 17–20 April 2007; pp. 535–540. [Google Scholar]
- Dulucq, B.; Morvan, S.; Massaloux, P.; Mazé-Merceur, G. Near-field 3D-RCS measurement simulation: Antenna pattern issues. In Proceedings of the 8th European Conference on Antennas and Propagation (EuCAP 2014), Hague, The Netherlands, 6–11 April 2014; pp. 3225–3227. [Google Scholar]
- Massaloux, P.; Cartesi, G.; Lespiaux, D. Indoor RCS Measurement Facility ARCHE 3D: RCS Multi-Calibration under Spherical Wave. In Proceedings of the 2015 9th European Conference on Antennas and Propagation (EuCAP), Lisbon, Portugal, 12–17 April 2015; pp. 1–5. [Google Scholar]
- Knott, E.F. A progression of high-frequency RCS prediction techniques. Proc. IEEE 1985, 73, 252–264. [Google Scholar] [CrossRef]
- Bouche, D.; Molinet, F.; Mittra, R. Asymptotic and hybrid techniques for electromagnetic scattering. Proc. IEEE 1993, 81, 1658–1684. [Google Scholar] [CrossRef]
- Algar, M.J.; Lozano, L.; Moreno, J.; González, I.; Cátedra, F.; Morneo, J. An efficient hybrid technique in RCS predictions of complex targets at high frequencies. J. Comput. Phys. 2017, 345, 345–357. [Google Scholar] [CrossRef]
- Chew, W.C.; Jin, J.; Michielssen, E.; Song, J. (Eds.) Fast and Efficient Algorithms in Computational Electromagnetics; Artech House Incorporated: Norwood, MA, USA, 2001. [Google Scholar]
- Delgado, C.; Mittra, R.; Catedra, F. Accurate Representation of the Edge Behavior of Current When Using PO-Derived Characteristic Basis Functions. IEEE Antennas Wirel. Propag. Lett. 2008, 7, 43–45. [Google Scholar] [CrossRef]
- García, J.-L.; Somolinos, A.; Lozano, L.; González, I.; Cátedra, F. Hybrid Technique for Efficient and Accurate Analysis of the V2X Channel in Urban Traffic Scenarios. In Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP), London, UK, 9–13 April 2018; pp. 1–4. [Google Scholar]
- NewFASANT: EM Simulation Software. IEEE Antennas Propag. Mag. 2013, 55, 181. [CrossRef]
- Chang, D.-C.; Tzay, M.-C.; Chung, R.-C. Far field RCS prediction by near field RCS measurement. In Proceedings of the APMC 2001, 2001 Asia-Pacific Microwave Conference (Cat. No.01TH8577), Taipei, Taiwan, 3–6 December 2001; Volume 3, pp. 1239–1242. [Google Scholar]
- Kent, B.M.; Chizever, H.M.; Soerens, R. On Reducing Primary Calibration Errors in Radar Cross Section Measurements. In Proceedings of the 18th Annual Symposium. Antenna Measurement Techniques Association, Seattle, WA, USA, 30 September–3 October 1996; pp. 383–388. [Google Scholar]
- Larsson, C.; Gustafsson, M.; Kristensson, G. Calibration Methods for Wideband forward RCS Measurements. In Proceedings of the Fourth European Conference on Antennas and Propagation, Barcelona, Spain, 12–16 April 2010; pp. 1–5. [Google Scholar]
- Falconer, D. Extrapolation of near-field RCS measurements to the far zone. IEEE Trans. Antennas Propag. 1988, 36, 822–829. [Google Scholar] [CrossRef]
- Knott, E.F.; Shaeffer, J.F.; Tuley, M.T. Radar Cross Section. Its Prediction, Measurement and Reduction; Artech House Incorporated: Dedham, MA, USA, 1985; Chapter 5. [Google Scholar]
- Ruck, G.T.; Barrick, D.E.; Stuart, W.D.; Krichbaum, C.K. Radar Cross Section Handbook; Plenum Press: New York, NY, USA, 1970; Volume 1, Chapter 2. [Google Scholar]
- Skolnik, M.I. Radar Handbook, 3rd ed.; McGraw Hill: New York, NY, USA, 2008. [Google Scholar]
- Bradley, C.J.; Collins, P.J.; Temple, M.A.; Terzuoli, A.J.; Nesti, G.; Fortuny, J.; Lewis, G.D. Issues in the Calibration of Bistatic RCS Measurements. In Proceedings of the Eleventh International Conference on Antennas and Propagation (IEE Conf. Publ. No. 480), Manchester, UK, 17–20 April 2001; Volume 1, pp. 293–297. [Google Scholar] [CrossRef]
- Shough, M.L. Radar Detection of Spherical Targets. NARCAP Research Associate (United Kingdom), 2009. Available online: http://www.martinshough.com/aerialphenomena/RCSsphere.pdf (accessed on 10 November 2020).
- Motomura, T.; Uchiyama, K.; Kajiwara, A. Measurement results of vehicular RCS characteristics for 79GHz millimeter band. In Proceedings of the 2018 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet), Anaheim, CA, USA, 14–17 January 2018; pp. 103–106. [Google Scholar]
Method | CPU Time | Memory Resources |
---|---|---|
GTD–PO | 2 h 21 min | 24 GB |
MoM | 21 h 50 min | 46 GB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchez-Olivares, P.; Lozano, L.; Somolinos, Á.; Cátedra, F. EM Modelling of Monostatic RCS for Different Complex Targets in the Near-Field Range: Experimental Evaluation for Traffic Applications. Electronics 2020, 9, 1890. https://doi.org/10.3390/electronics9111890
Sanchez-Olivares P, Lozano L, Somolinos Á, Cátedra F. EM Modelling of Monostatic RCS for Different Complex Targets in the Near-Field Range: Experimental Evaluation for Traffic Applications. Electronics. 2020; 9(11):1890. https://doi.org/10.3390/electronics9111890
Chicago/Turabian StyleSanchez-Olivares, Pablo, Lorena Lozano, Álvaro Somolinos, and Felipe Cátedra. 2020. "EM Modelling of Monostatic RCS for Different Complex Targets in the Near-Field Range: Experimental Evaluation for Traffic Applications" Electronics 9, no. 11: 1890. https://doi.org/10.3390/electronics9111890
APA StyleSanchez-Olivares, P., Lozano, L., Somolinos, Á., & Cátedra, F. (2020). EM Modelling of Monostatic RCS for Different Complex Targets in the Near-Field Range: Experimental Evaluation for Traffic Applications. Electronics, 9(11), 1890. https://doi.org/10.3390/electronics9111890