Nickel Particle-Based Compact Flexible Antenna for Modern Communication Systems
Abstract
:1. Introduction
2. Design of Flexible Antenna
Flexible Antenna at 42% Concentration of Nickel
3. Methodology and Measurement
4. Results and Discussion
4.1. Preparation of Flexible Nickel Aluminate (NiAl2O4)
4.2. Flexible Antenna at 42% Concentration of Nickel
4.3. Parametric Analysis of the Proposed Flexible Patch Antenna
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- AbuTarboush, H.F.; Shamim, A. Paper-Based Inkjet-Printed Tri-Band U-Slot Monopole Antenna for Wireless Applications. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 1234–1237. [Google Scholar] [CrossRef]
- Faraj, M.G.; Ibrahim, K.; Ali, M.K.M. PET as a plastic substrate for the flexible optoelectronic applications. Optoelectronics and Advanced Materials. Rapid Commun. 2011, 5, 879–882. [Google Scholar]
- Khaleel, H.R.; Al-Rizzo, H.M.; Rucker, D.G. Compact Polyimide-Based Antennas for Flexible Displays. J. Disp. Technol. 2012, 8, 91–97. [Google Scholar] [CrossRef]
- Jiang, Z.H.; Brocker, D.E.; Sieber, P.E.; Werner, D.H. A Compact, Low-Profile Metasurface-Enabled Antenna for Wearable Medical Body-Area Network Devices. IEEE Trans. Antennas Propag. 2014, 62, 4021–4030. [Google Scholar] [CrossRef]
- Ramli, M.N.; Soh, P.J.; Jamlos, M.F.; Lago, H.; Aziz, N.M.; Al-Hadi, A.A. Dual-band wearable fluidic antenna with metasurface embedded in a PDMS substrate. Appl. Phys. A 2017, 123, 149. [Google Scholar] [CrossRef]
- Sun, Y.; Yuk, T.I.; Cheung, S.W. Design of a textile ultra-wideband antenna with stable performance for body-centric wireless communications. IET Microwaves Antennas Propag. 2014, 8, 1363–1375. [Google Scholar] [CrossRef]
- Bengio, E.A.; Senic, D.; Taylor, L.W.; Tsentalovich, D.E.; Chen, P.; Holloway, C.L.; Babakhani, A.; Long, C.J.; Novotny, D.R.; Booth, J.C.; et al. High efficiency carbon nanotube thread antennas. Appl. Phys. Lett. 2017, 111, 163109. [Google Scholar] [CrossRef]
- Ahamed, E.; Hasan, M.M.; Faruque, M.R.I.; Bin Mansor, M.F.; Abdullah, S.; Islam, M.T. Left-handed metamaterial inspired by joint T-D geometry on flexible NiAl2O4 substrate. PLOS ONE 2018, 13, e0199150. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.M.; Faruque, M.R.I.; Islam, M.T. Dual Band Metamaterial Antenna For LTE/Bluetooth/WiMAX System. Sci. Rep. 2018, 8, 1240. [Google Scholar] [CrossRef] [PubMed]
- Anagnostou, D.E.; Gheethan, A.A.; Amert, A.K.; Whites, K.W. A Direct-Write Printed Antenna on Paper-Based Organic Substrate for Flexible Displays and WLAN Applications. J. Disp. Technol. 2010, 6, 558–564. [Google Scholar] [CrossRef]
- Choi, S.W.; Lee, H.J.; Lee, J.Y.; Lee, K.B. CPW-fed compact flexible antenna based on a zeroth-order resonator. In Proceedings of the 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), Spokane, WA, USA, 3–8 July 2011. [Google Scholar]
- Jalil, M.E.; Rahim, M.K.A.; Abdullah, M.A.; Ayop, O. Compact CPW-fed Ultra-wideband (UWB) antenna using denim textile material. In International Symposium on Antennas and Propagation. In Proceedings of the 2012 International Symposium on Antennas and Propagation (ISAP), Nagoys, Japan, 29 October–2 November 2012. [Google Scholar]
- Mesquita, J.M.; Pires, N.; Moreira, A.A. Influence of deformations on the matching of a flexible dual-band antenna. In Proceedings of the 2013 7th European Conference on Antennas and Propagation (EuCAP), Gothenburg, Sweden, 8–12 April 2013. [Google Scholar]
- Porter, E.; Walls, G.; Zhou, Y.; Popovic, M.; Schwartz, J.D. A FLEXIBLE BROADBAND ANTENNA AND TRANSMISSION LINE NETWORK FOR A WEARABLE MICROWAVE BREAST CANCER DETECTION SYSTEM. Prog. Electromagn. Res. Lett. 2014, 49, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Jung, Y.H.; Qiu, Y.; Lee, S.; Shih, T.Y.; Xu, Y.; Xu, R.; Lee, J.; Schendel, A.A.; Lin, W.; Williams, J.C.; et al. A compact parylene coated WLAN flexible antenna for implantable electronics. IEEE Antenn. Wirel. Propag. Lett. 2015, 15, 1382–1385. [Google Scholar] [CrossRef]
- Tighezza, M.; Rahim, S.K.A.; Islam, M.T. Flexible wideband antenna for 5G applications. Microw. Opt. Technol. Lett. 2017, 60, 38–44. [Google Scholar] [CrossRef]
- Anguera, J.; Daniel, J.P.; Borja, C.; Mumbrú, J.; Puente, C.; Leduc, T.; Sayegrih, K.; Roy, P.V. Metallized Foams for Antenna Design: Application to Fractal-Shaped Sierpinski-Carpet Monopole. Prog. Electromagn. Res. 2010, 104, 239–251. [Google Scholar] [CrossRef]
- Rahman, M.A.; Ahamed, E.; Faruque, M.R.I.; Islam, M.T. Preparation of NiAl2O4-Based Flexible Substrates for Metamaterials with Negative Dielectric Properties. Sci. Rep. 2018, 8, 14948. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.; Aastha; Kalra, P.; Sidhu, E. Flexible novel trident shaped microstrip patch antennas design employing Teflon substrate. In Proceedings of the Flexible novel trident shaped microstrip patch antennas design employing Teflon substrate, Allahbad, India, 21–22 October 2016. [Google Scholar]
- Simorangkir, R.B.V.B.; Kiourti, A.; Esselle, K.P. UWB Wearable Antenna With a Full Ground Plane Based on PDMS-Embedded Conductive Fabric. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 493–496. [Google Scholar] [CrossRef]
Parameters | Size (mm) | Parameters | Size (mm) |
---|---|---|---|
Substrate Length (SUBL) | 25 | Ground Length (GNDL) | 25 |
Substrate Width (SUBW) | 27 | Ground Width (GNDW) | 8.5 |
Patch Length (PL) | 19 | Gap (G1) | 3.0 |
Patch Width (PW) | 13 | Gap (G2) | 2.0 |
Feed Line Length (FL) | 6.5 | Gap (G3) | 10.5 |
Feed Line Width (FW) | 4.0 | Substrate Thickness (T) | 1.0 |
Materials | JMR | moles | Ni46 (0.42) |
---|---|---|---|
Nickel nitrate hexahydrate (Ni(NO3)2.6H2O) | 290.81 | 0.0375 | 4.580 gm |
Aluminium nitrate nonahydrate (Al(NO3)3.9H2O) | 375.13 | 0.0375 | 8.159 gm |
Citric acid (C6H8O7).H2O | 210.14 | 0.0375 | 7.88025 gm |
Polyvinyl alcohol (C4H6O2)n | 86.09 | - | - |
Distil water | 50 mL | | |
Structural Parametric Analysis | Frequency Regimes (VSWR < 2) |
---|---|
Patch Strucutre-1 | 5 ~ 5.64 GHz |
Patch Strucutre-2 | 5 ~ 8.51 GHz |
Patch Strucutre-3 | 7.52 ~ 8.91 GHz |
Patch Strucutre-4 | 5.80 ~ 9.30 GHz |
Properties | Flexible Antenna at 42% Concentration of Nickel |
---|---|
Total Dimension | 25 × 27 mm2 |
Substrate Material | Nickel aluminate (NiAl2O4) |
Return loss | Less than -10 dB |
VSWR | Less than 2.0 |
Input Impedance | 50 Ω |
Operating Frequency | 5 ~ 12.5 GHz |
Resonance Frequencies | 7.75 GHz |
Measured Bandwidth | 2.35 GHz |
Maximum Gain (dBi) | 4.75 dBi |
Total Efficiency | 91% |
Radiation Pattern | Directional |
Applications | C-Band |
References | Substrate Material | Dimensions (mm2) | Bandwidth (GHz) | Gain (dBi) | Applications |
---|---|---|---|---|---|
Anagnostou et al. [10] | Organic paper | 46 × 30 | 0.42 | 1.2 | WLAN |
Choi et al. [11] | Liquid crystal polymer | 30 × 30 | 0.07 | 4.98 | Wi-Fi |
Porter et al. [14] | Rogers Ultralam 3850 | 24 × 32 | 3.0 | 2.7 | Microwave Imaging |
Jung et al. [15] | Ultrathin Parylene C film | 26.48 × 18.20 | 3.4 | 3.8 | WLAN |
Kaur et al. [19] | Teflon | 85 × 90 | 0.53 | 6.81 | WLAN, Wi-Fi |
Tighezza et al. [16] | Polyethylene terephthalate | 60 × 75 | 6.0 | 5 | 5G |
Simorangkir et al. [20] | Polydi methylsiloxane | 80 × 67 | 6.0 | 4.53 | UWB |
Proposed Antenna | Nickel aluminate | 25 × 27 | 2.35 | 4.75 | C-Band |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.A.; Faruque, M.R.I.; Ahamed, E.; Islam, M.T.; Singh, M. Nickel Particle-Based Compact Flexible Antenna for Modern Communication Systems. Electronics 2019, 8, 787. https://doi.org/10.3390/electronics8070787
Rahman MA, Faruque MRI, Ahamed E, Islam MT, Singh M. Nickel Particle-Based Compact Flexible Antenna for Modern Communication Systems. Electronics. 2019; 8(7):787. https://doi.org/10.3390/electronics8070787
Chicago/Turabian StyleRahman, Md. Atiqur, Mohammad Rashed Iqbal Faruque, Eistiak Ahamed, Mohammad Tariqul Islam, and Mandeep Singh. 2019. "Nickel Particle-Based Compact Flexible Antenna for Modern Communication Systems" Electronics 8, no. 7: 787. https://doi.org/10.3390/electronics8070787
APA StyleRahman, M. A., Faruque, M. R. I., Ahamed, E., Islam, M. T., & Singh, M. (2019). Nickel Particle-Based Compact Flexible Antenna for Modern Communication Systems. Electronics, 8(7), 787. https://doi.org/10.3390/electronics8070787