Next Article in Journal
An Inner- and Outer-Fed Dual-Arm Archimedean Spiral Antenna for Generating Multiple Orbital Angular Momentum Modes
Previous Article in Journal
Efficient Neural Network Implementations on Parallel Embedded Platforms Applied to Real-Time Torque-Vectoring Optimization Using Predictions for Multi-Motor Electric Vehicles
Open AccessFeature PaperReview

Perylene-Diimide Molecules with Cyano Functionalization for Electron-Transporting Transistors

1
CNR-SPIN, c/o Dipartimento di Fisica “Ettore Pancini”, P.le Tecchio, 80, I-80125 Naples, Italy
2
Physics Department “Ettore Pancini”, University of Naples ‘Federico II’, P.le Tecchio, 80, I-80125 Naples, Italy
*
Author to whom correspondence should be addressed.
Electronics 2019, 8(2), 249; https://doi.org/10.3390/electronics8020249
Received: 30 January 2019 / Revised: 14 February 2019 / Accepted: 18 February 2019 / Published: 22 February 2019
(This article belongs to the Special Issue Organic Semiconductors and Their Electronic Application)
Core-cyanated perylene diimide (PDI_CY) derivatives are molecular compounds exhibiting an uncommon combination of appealing properties, including remarkable oxidative stability, high electron affinities, and excellent self-assembling properties. Such features made these compounds the subject of study for several research groups aimed at developing electron-transporting (n-type) devices with superior charge transport performances. After about fifteen years since the first report, field-effect transistors based on PDI_CY thin films are still intensely investigated by the scientific community for the attainment of n-type devices that are able to balance the performances of the best p-type ones. In this review, we summarize the main results achieved by our group in the fabrication and characterization of transistors based on PDI8-CN2 and PDIF-CN2 molecules, undoubtedly the most renowned compounds of the PDI_CY family. Our attention was mainly focused on the electrical properties, both at the micro and nanoscale, of PDI8-CN2 and PDIF-CN2 films deposited using different evaporation techniques. Specific topics, such as the contact resistance phenomenon, the bias stress effect, and the operation in liquid environment, have been also analyzed. View Full-Text
Keywords: electron-transporting devices; thin film deposition; thin film characterization electron-transporting devices; thin film deposition; thin film characterization
Show Figures

Figure 1

MDPI and ACS Style

Barra, M.; Chiarella, F.; Chianese, F.; Vaglio, R.; Cassinese, A. Perylene-Diimide Molecules with Cyano Functionalization for Electron-Transporting Transistors. Electronics 2019, 8, 249.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop