Coordinated Multicast Precoding for Multi-Cell Massive MIMO Transmission Exploiting Statistical Channel State Information
Abstract
:1. Introduction
- With the design goal to maximize the sum of the achievable ergodic multicast rate in coordinated multi-cell massive MIMO multicast precoding, we show that it is optimal for each BS to transmit the multicast signals in the beam domain.
- We propose an iterative beam domain power allocation algorithm for coordinated multicast transmission via invoking the minorization-maximization (MM) framework. Our proposed algorithm is guaranteed to converge to a stationary point.
- We employ the large-dimensional random matrix theory to derive the deterministic equivalent (DE) of the optimization objective to further reduce the computational complexity.
2. System Model
3. Coordinated Multicast Transmission Design
Algorithm 1 Beam Domain Coordinated Multicast Power Allocation Algorithm |
Require: An initialization power allocation , the beam domain channel statistics , the preset threshold Ensure: Beam domain power allocation pattern
|
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Proof of Theorem 1
References
- Marzetta, T.L. Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wirel. Commun. 2010, 9, 3590–3600. [Google Scholar] [CrossRef]
- Wang, C.X.; Haider, F.; Gao, X.Q.; You, X.H.; Yang, Y.; Yuan, D.; Aggoune, H.M.; Haas, H.; Fletcher, S.; Hepsaydir, E. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun. Mag. 2014, 52, 122–130. [Google Scholar] [CrossRef] [Green Version]
- Swindlehurst, A.L.; Ayanoglu, E.; Heydari, P.; Capolino, F. Millimeter-wave massive MIMO: The next wireless revolution? IEEE Commun. Mag. 2014, 52, 56–62. [Google Scholar] [CrossRef]
- Lu, L.; Li, G.Y.; Swindlehurst, A.L.; Ashikhmin, A.; Zhang, R. An overview of massive MIMO: Benefits and challenges. IEEE J. Sel. Top. Signal Process. 2014, 8, 742–758. [Google Scholar] [CrossRef]
- Jose, J.; Ashikhmin, A.; Marzetta, T.L.; Vishwanath, S. Pilot contamination and precoding in multi-cell TDD Systems. IEEE Trans. Wirel. Commun. 2011, 10, 2640–2651. [Google Scholar] [CrossRef]
- Hoydis, J.; ten Brink, S.; Debbah, M. Massive MIMO in the UL/DL of cellular networks: How many antennas do we need? IEEE J. Sel. Areas Commun. 2013, 31, 160–171. [Google Scholar] [CrossRef] [Green Version]
- Ngo, H.Q.; Larsson, E.G.; Marzetta, T.L. Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans. Commun. 2013, 61, 1436–1449. [Google Scholar]
- Venkategowda, N.K.D.; Tandon, N.; Jagannatham, A.K. MVDR-based multicell cooperative beamforming techniques for unicast/multicast MIMO networks with perfect/imperfect CSI. IEEE Trans. Veh. Technol. 2015, 64, 5160–5176. [Google Scholar] [CrossRef]
- Yue, M.C.; Wu, S.X.; So, A.M.C. A robust design for MISO physical-layer multicasting over line-of-sight channels. IEEE Signal Process. Lett. 2016, 23, 939–943. [Google Scholar] [CrossRef]
- Wang, W.; Liu, A.; Zhang, Q.; You, L.; Gao, X.Q.; Zheng, G. Robust multigroup multicast transmission for frame-based multi-beam satellite systems. IEEE Access 2018, 6, 46074–46083. [Google Scholar] [CrossRef]
- You, L.; Liu, A.; Wang, W.; Gao, X.Q. Outage constrained robust multigroup multicast beamforming for multi-beam satellite communication systems. IEEE Wirel. Commun. Lett. 2018, in press. [Google Scholar] [CrossRef]
- You, L.; Xiong, J.; Li, K.X.; Wang, W.; Gao, X.Q. Non-orthogonal unicast and multicast transmission for massive MIMO with statistical channel state information. IEEE Access 2018, in press. [Google Scholar] [CrossRef]
- You, L.; Wang, W.; Gao, X.Q. Energy-efficient multicast precoding for massive MIMO transmission with statistical CSI. Energies 2018, 11, 3175. [Google Scholar] [CrossRef]
- Lecompte, D.; Gabin, F. Evolved multimedia broadcast/multicast service (eMBMS) in LTE-advanced: Overview and Rel-11 enhancements. IEEE Commun. Mag. 2012, 50, 68–74. [Google Scholar] [CrossRef]
- Xiang, Z.; Tao, M.; Wang, X. Massive MIMO multicasting in noncooperative cellular networks. IEEE J. Sel. Areas Commun. 2014, 32, 1180–1193. [Google Scholar] [CrossRef]
- Sadeghi, M.; Björnson, E.; Larsson, E.G.; Yuen, C.; Marzetta, T.L. Max–min fair transmit precoding for multi-group multicasting in massive MIMO. IEEE Trans. Wirel. Commun. 2018, 17, 1358–1373. [Google Scholar] [CrossRef]
- Xiang, Z.; Tao, M.; Wang, X. Coordinated Multicast Beamforming in Multicell Networks. IEEE J. Sel. Areas Commun. 2014, 32, 1180–1193. [Google Scholar] [CrossRef]
- He, S.; Huang, Y.; Jin, S.; Yang, L. Energy efficient coordinated beamforming design in multi-cell multicast networks. IEEE Commun. Lett. 2015, 19, 985–988. [Google Scholar] [CrossRef]
- Hong, Y.W.P.; Li, W.C.; Chang, T.H.; Lee, C.H. Coordinated multicasting with opportunistic user selection in multicell wireless systems. IEEE Trans. Signal Process. 2015, 63, 3506–3521. [Google Scholar] [CrossRef]
- Kim, S.; Lee, S. Coordinated multicast based on a MIMO relay station in a single fequency network. IEEE Trans. Veh. Technol. 2016, 65, 685–698. [Google Scholar] [CrossRef]
- Zhou, L.; Zheng, L.; Wang, X.; Jiang, W.; Luo, W. Coordinated multicell multicast beamforming based on manifold optimization. IEEE Wirel. Commun. Lett. 2017, 21, 1673–1676. [Google Scholar] [CrossRef]
- Tervo, O.; Pennanen, H.; Christopoulos, D.; Chatzinotas, S.; Ottersten, B. Distributed optimization for coordinated beamforming in multicell multigroup multicast systems: Power minimization and SINR balancing. IEEE Trans. Signal Process. 2018, 66, 171–185. [Google Scholar] [CrossRef]
- You, L.; Gao, X.Q.; Xia, X.G.; Ma, N.; Peng, Y. Pilot reuse for massive MIMO transmission over spatially correlated Rayleigh fading channels. IEEE Trans. Wirel. Commun. 2015, 14, 3352–3366. [Google Scholar] [CrossRef]
- Zhong, W.; You, L.; Lian, T.; Gao, X.Q. Multi-cell massive MIMO transmission with coordinated pilot reuse. Sci. China Technol. Sci. 2015, 58, 2186–2194. [Google Scholar] [CrossRef]
- You, L.; Gao, X.Q.; Swindlehurst, A.L.; Zhong, W. Channel acquisition for massive MIMO-OFDM with adjustable phase shift pilots. IEEE Trans. Signal Process. 2016, 64, 1461–1476. [Google Scholar] [CrossRef]
- Chen, Y.; Gao, X.Q.; Xia, X.G.; You, L. Robust MMSE precoding for massive MIMO transmission with hardware mismatch. Sci. China Inf. Sci. 2018, 61, 042303. [Google Scholar] [CrossRef]
- Gao, X.Q.; Jiang, B.; Li, X.; Gershman, A.B.; McKay, M.R. Statistical eigenmode transmission over jointly correlated MIMO channels. IEEE Trans. Inf. Theory 2009, 55, 3735–3750. [Google Scholar] [CrossRef]
- Weichselberger, W.; Herdin, M.; Özcelik, H.; Bonek, E. A stochastic MIMO channel model with joint correlation of both link ends. IEEE Trans. Wirel. Commun. 2006, 5, 90–100. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Gao, X.Q.; Ding, Z. BDMA in Multicell Massive MIMO Communications: Power Allocation Algorithms. IEEE Trans. Signal Process. 2017, 65, 2962–2974. [Google Scholar] [CrossRef]
- Barriac, G.; Madhow, U. Space-time communication for OFDM with implicit channel feedback. IEEE Trans. Inf. Theory 2004, 50, 3111–3129. [Google Scholar] [CrossRef]
- You, L.; Gao, X.Q.; Li, G.Y.; Xia, X.G.; Ma, N. BDMA for millimeter-wave/Terahertz massive MIMO transmission with per-beam synchronization. IEEE J. Sel. Areas Commun. 2017, 35, 1550–1563. [Google Scholar] [CrossRef]
- Wen, C.K.; Jin, S.; Wong, K.K.; Chen, J.C.; Ting, P. Channel estimation for massive MIMO using Gaussian-mixture Bayesian learning. IEEE Trans. Wirel. Commun. 2015, 14, 1356–1368. [Google Scholar] [CrossRef]
- Hassibi, B.; Hochwald, B.M. How much training is needed in multiple-antenna wireless links? IEEE Trans. Inf. Theory 2003, 49, 951–963. [Google Scholar] [CrossRef] [Green Version]
- Tervo, O.; Tran, L.N.; Pennanen, H.; Chatzinotas, S.; Ottersten, B.; Juntti, M. Energy-efficient multi-cell multigroup multicasting with joint beamforming and antenna selection. IEEE Trans. Signal Process. 2018, 66, 4904–4919. [Google Scholar] [CrossRef]
- Sun, Y.; Babu, P.; Palomar, D.P. Majorization-minimization algorithms in signal processing, communications, and machine learning. IEEE Trans. Signal Process. 2017, 65, 794–816. [Google Scholar] [CrossRef]
- Lu, A.A.; Gao, X.Q.; Xiao, C. Free deterministic equivalents for the analysis of MIMO multiple access channel. IEEE Trans. Inf. Theory 2016, 62, 4604–4629. [Google Scholar] [CrossRef]
- WINNER II Channel Models; IST-4-027756 WINNER II D1.1.2 V1.2; Technical Report; EBITG, TUI, UOULU, CU/CRC, NOKIA: Esbo, Finland, 2008.
- Tulino, A.M.; Lozano, A.; Verdú, S. Capacity-achieving input covariance for single-user multi-antenna channels. IEEE Trans. Wirel. Commun. 2006, 5, 662–671. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value |
---|---|
Channel model | WINNER II |
Scenario | Suburban macro-cell |
Array topology | ULA with half wavelength antenna spacing |
Number of Sectors | |
Number of BS antennas | |
Number of UTs in each sector | |
Number of UT antennas |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, L.; Chen, X.; Wang, W.; Gao, X. Coordinated Multicast Precoding for Multi-Cell Massive MIMO Transmission Exploiting Statistical Channel State Information. Electronics 2018, 7, 338. https://doi.org/10.3390/electronics7110338
You L, Chen X, Wang W, Gao X. Coordinated Multicast Precoding for Multi-Cell Massive MIMO Transmission Exploiting Statistical Channel State Information. Electronics. 2018; 7(11):338. https://doi.org/10.3390/electronics7110338
Chicago/Turabian StyleYou, Li, Xu Chen, Wenjin Wang, and Xiqi Gao. 2018. "Coordinated Multicast Precoding for Multi-Cell Massive MIMO Transmission Exploiting Statistical Channel State Information" Electronics 7, no. 11: 338. https://doi.org/10.3390/electronics7110338
APA StyleYou, L., Chen, X., Wang, W., & Gao, X. (2018). Coordinated Multicast Precoding for Multi-Cell Massive MIMO Transmission Exploiting Statistical Channel State Information. Electronics, 7(11), 338. https://doi.org/10.3390/electronics7110338