Carbon Nanotube-Based Nanomechanical Sensor: Theoretical Analysis of Mechanical and Vibrational Properties
Abstract
:1. Introduction
2. CNT-Based Mass Sensor
2.1. Background of Nanomechanical Sensor Research
2.2. Theoretical Approach of Vibration Characteristics
3. CNT Probes for Atomic Force Microscope
3.1. Fabrication and Structures of CNT Tip
3.2. Theoretical Mode and Approach of Buckling Properties
- (a)
- For the inner and outer nanotubes with fixed ends:
- (b)
- For the inner and outer nanotubes with free ends:
- (c)
- For the continuous conditions at position , the relationships of displacement and force between the transverse deflections and are given as:
4. Conclusions
Conflicts of Interest
References
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Bandaru, P.R. Electrical properties and applications of carbon nanotube structures. J. Nanosci. Nanotechnol. 2007, 7, 1–29. [Google Scholar] [CrossRef]
- Abdalla, S.; Al-Marzouki, F.; Al-Ghamdi, A.A.; Abdel-Daiem, A. Different technical applications of carbon nanotubes. Nanoscale Res. Lett. 2015, 10, 358. [Google Scholar] [CrossRef] [PubMed]
- Thostensona, E.T.; Renb, Z.; Choua, T.W. Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 2001, 61, 1899–1912. [Google Scholar] [CrossRef]
- Popov, V.N. Carbon nanotubes: Properties and application. Mater. Sci. Eng. 2004, 43, 61–102. [Google Scholar] [CrossRef]
- Paradise, M.; Goswami, T. Carbon nanotubes-Production and industrial applications. Mater. Des. 2007, 28, 1477–1489. [Google Scholar] [CrossRef]
- Qian, D.; Wagner, G.J.; Liu, W.K.; Yu, M.F.; Ruoff, R.S. Mechanics of carbon nanotubes. Appl. Mech. Rev. 2002, 55, 495–533. [Google Scholar] [CrossRef]
- Natsuki, T.; Endo, M. Structural dependence of nonlinear elastic properties for carbon nanotubes using a continuum analysis. Appl. Phys. A 2005, 80, 1463–1468. [Google Scholar] [CrossRef]
- Yu, M.F.; Lourie, O.; Dyer, M.J.; Moloni, K.; Kelly, T.F.; Ruoff, R.S. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000, 287, 637–640. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.Q.; Vajtai, R.; Ajayan, P.M. Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 2001, 79, 1172–1174. [Google Scholar] [CrossRef]
- Alemán, B.J.; Sussman, A.; Mickelson, W.; Zettl, V. A carbon nanotube-based NEMS parametric amplifier for enhanced radio wave detection and electronic signal amplification. J. Phys. Conf. Ser. 2011, 302, 1–6. [Google Scholar] [CrossRef]
- Rajoria, H.; Jalili, N. Passive vibration dampingenhancement using carbon nanotube-epoxy reinforced composites. Comps. Sci. Technol. 2005, 65, 2079–2093. [Google Scholar] [CrossRef]
- Rotkin, S.V. Nanotube MEMS: Modeling extreme nanoscale devices. Proc. SPIE 2009, 7318, 1–13. [Google Scholar]
- Baughman, R.H.; Zakhidov, A.A.; de Heer, W.A. Carbon nanotubes—The route toward applications. Science 2002, 297, 787–792. [Google Scholar] [CrossRef] [PubMed]
- Zang, X.; Zhou, Q.; Chang, J.; Liu, Y.; Liwei, L. Graphene and carbon nanotube (CNT) in MEMS/NEMS applications. Microelectron. Eng. 2015, 25, 192–206. [Google Scholar] [CrossRef]
- Yan, Y.; Miao, J.; Yang, Z.; Xiao, F.X.; Yang, H.B.; Liu, B.; Yang, Y. Carbon nanotube catalysts: Recent advances in synthesis, characterization and applications. Chem. Soc. Rev. 2015, 44, 3295–3346. [Google Scholar] [CrossRef] [PubMed]
- Rafique, M.M.A.; Iqbal, J. Production of carbon nanotubes by different routes- A review. J. Encapsul. Adsorpt. Sci. (JEAS) 2011, 1, 29–34. [Google Scholar] [CrossRef]
- Sazonova, V.; Yaish, Y.; Üstünel, H.; Roundy, D.; Arias, T.A.; McEuen, P.L. A tunable carbon nanotube electromechanical oscillator. Lett. Nat. 2004, 431, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Che, Y.; Chen, H.; Gui, H.; Liu, J.; Liu, B.; Zhou, C. Review of carbon nanotube nanoelectronics and microelectronics. Semicond. Sci. Technol. 2014, 29, 073001. [Google Scholar] [CrossRef]
- Hall, A.R.; An, L.; Liu, J.; Vicci, L.; Falvo, M.R.; Superfine, R.; Washburn, S. Experimental measurement of single-wall carbon nanotube torsional properties. Phys. Rev. Lett. 2006, 96, 256102. [Google Scholar] [CrossRef] [PubMed]
- Knobel, R.G. Mass sensors: Weighing single atoms with a nanotube. Nat. Nanotechnol. 2008, 3, 525–526. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Rogers, J.A. Random networks and aligned arrays of single-walled carbon nanotubes for electronic device applications. Nano Res. 2008, 1, 259–272. [Google Scholar] [CrossRef]
- Kauth, C.; Pastre, M.; Kayal, M. A novel approach to high-speed high-resolution on-chip mass sensing. Microelectron. J. 2014, 45, 1648–1655. [Google Scholar] [CrossRef]
- Yang, Y.T.; Callegari, C.; Feng, X.L.; Ekinci, K.L.; Roukes, M.L. Zeptogram-scale nano-mechanical mass sensing. Nano Lett. 2006, 6, 583–586. [Google Scholar] [CrossRef] [PubMed]
- Tretkoff, E. Weighing device achieves zeptogram-level sensitivity. APS News 2005, 14, 5. [Google Scholar]
- Poncharal, P.; Wang, Z.L.; Ugarte, D.; de Heer, W.A. Electrostatic defections and electromechanical resonances of carbon nanotubes. Science 1999, 283, 1513–1516. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L.; Poncharal, W.A.; de Heer, W.A. Measuring physical and mechanical properties of individual carbon nanotubes by in situ TEM. J. Phys. Chem. Solids 2000, 61, 1025–1030. [Google Scholar] [CrossRef]
- Jensen, K.; Kim, K.; Zettl, A. An atomic-resolution nanomechanical mass sensor. Nat. Nanotechnol. 2008, 3, 533–537. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; Zhu, K.D. Weighing a single atom using a coupled plasmon–carbon nanotube system. Sci. Technol. Adv. Mater. 2012, 13, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Kühn, S.; Håkanson, U.; Rogobete, L.; Sandoghdar, V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 2006, 97, 017402. [Google Scholar] [CrossRef] [PubMed]
- Kalkbrenner, T.; Håkanson, U.; Sandoghdar, V. Tomographic plasmon spectroscopy of a single gold nanoparticle. Nano Lett. 2004, 4, 2309–2314. [Google Scholar] [CrossRef]
- Lassagne, B.; Garcia-Sanchez, D.; Aguasca, A.; Bachtold, A. Ultrasensitive Mass Sensing with a Nanotube Electromechanical Resonator. Nano Lett. 2008, 3735–3738. [Google Scholar] [CrossRef] [PubMed]
- Dai, M.; Eom, K.; Kim, C.W. Nanomechanical mass detection using nonlinear oscillations. Appl. Phys. Lett. 2009, 95, 203104. [Google Scholar] [CrossRef]
- Natsuki, T.; Endo, M. Vibration analysis of embedded carbon nanotubes using wave propagation approach. J. Appl. Phys. 2006, 99, 034311. [Google Scholar] [CrossRef]
- Shi, J.X.; Natsuki, T.; Ni, Q.-Q. Equivalent Young’s modulus and thickness of graphene sheets for the continuum mechanical models. Appl. Phys. Lett. 2014, 104, 223101. [Google Scholar] [CrossRef]
- Batra, R.C.; Sears, A. Continuum models of multi-walled carbon nanotubes, Inter. J. Solids Struct. 2007, 44, 7577–7596. [Google Scholar] [CrossRef]
- Li, C.; Chou, T.W. Mass detection using carbon nanotube-based nanomechanical resonators. Appl. Phys. Lett. 2004, 84, 5246–5248. [Google Scholar] [CrossRef]
- Patela, A.M.; Joshib, A.Y. Investigation of double walled carbon nanotubes for mass sensing. Proc. Technol. 2014, 14, 290–294. [Google Scholar] [CrossRef]
- Patel, A.M.; Joshi, A.M. Characterizing the nonlinear behaviour of double walled carbon nanotube based nano mass sensor. Microsyst. Technol. 2017, 23, 1879–1889. [Google Scholar] [CrossRef]
- Shen, Z.B.; Deng, B.; Li, X.F.; Tang, G.J. Vibration of double-walled carbon nanotube-based mass sensor via nonlocal Timoshenko beam theory. J. Nanotechnol. Eng. 2012, 2, 031003. [Google Scholar] [CrossRef]
- Wang, C.M.; Tan, V.B.C.; Zhang, Y.Y. Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes. J. Sound Vib. 2006, 294, 1060–1072. [Google Scholar] [CrossRef]
- Natsuki, T.; Matsuyama, N.; Shi, J.X.; Ni, Q.-Q. Vibration analysis of nanomechanical mass sensor using carbon nanotubes under axial tensile load. Appl. Phys. A 2014, 116, 1001–1007. [Google Scholar] [CrossRef]
- Natsuki, T.; Matsuyama, N.; Ni, Q.-Q. Vibration analysis of carbon nanotube-based resonator using nonlocal elasticity theory. Appl. Phys. A 2015, 120, 1309–1313. [Google Scholar] [CrossRef]
- Coleman, J.N.; Khan, U.; Blau, W.J.; Gun’ko, Y.K. Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites. Carbon 2006, 44, 1624–1652. [Google Scholar] [CrossRef]
- Behera, L.; Chakraverty, S. Recent researches on nonlocal elasticity theory in the vibration of carbon nanotubes using beam models: A Review. Arch. Comput. Methods Eng. 2017, 24, 481–494. [Google Scholar] [CrossRef]
- Binnig, G.; Quate, C.F.; Gerber, C. Atomic force microscope. Phys. Rev. Lett. 1986, 56, 930–933. [Google Scholar] [CrossRef] [PubMed]
- Hafner, J.H.; Cheung, C.-L.; Woolley, A.T.; Lieber, C.M. Structural andfunctional imaging with carbon nanotube AFM probes. Prog. Biophys. Mol. Biol. 2001, 77, 73–110. [Google Scholar] [CrossRef]
- Chen, L.; Cheung, C.-L.; Ashby, P.D.; Lieber, C.M. Single-walled carbon nanotube AFM probes: Optimal imaging resolution of nanoclusters and biomolecules in ambient and fluid environments. Nano Lett. 2004, 4, 1725–1731. [Google Scholar] [CrossRef]
- Hafner, J.H.; Cheung, C.-L.; Oosterkamp, T.H.; Lieber, C.M. High-yield assembly of individual single-walled carbon nanotube tips for scanning probe microscopies. J. Phys. Chem. B 2001, 105, 743–746. [Google Scholar] [CrossRef]
- Dai, H.; Hafner, J.H.; Rinzler, A.G.; Colbert, D.T.; Smalley, R.E. Nanotubes as nanoprobes in scanning probe microscopy. Nature 1996, 384, 147–150. [Google Scholar] [CrossRef]
- Nguyen, C.V.; Stevens, R.M.D.; Barber, J.; Han, J.; Meyyappan, M.; Sanchez, M.I.; Larson, C.; Hinsberg, W.D. Carbon nanotube scanning probe for profiling of deep-ultraviolet and 193 nm photoresist patterns. Appl. Phys. Lett. 2002, 81, 901–903. [Google Scholar] [CrossRef]
- Fang, F.Z.; Xu, Z.W.; Dong, S.; Zhang, G.X. High aspect ratio nanometrology using carbon nanotube probes in atomic force microscopy. CIRP Ann.-Manuf. Technol. 2007, 56, 533–536. [Google Scholar] [CrossRef]
- Sader, J.E.; Sader, R.C. Susceptibility of atomic force microscope cantilevers to lateral forces: Experimental verification. Appl. Phys. Lett. 2000, 83, 3195–3197. [Google Scholar] [CrossRef]
- Hafner, J.H.; Cheung, C.L.; Lieber, C.M. Growth of nanotubes for probe microscopy tips. Nature 1999, 398, 761–762. [Google Scholar] [CrossRef] [Green Version]
- Cheung, C.L.; Hafner, J.H.; Lieber, C.M. Carbon nanotube atomic force microscopy tips: Direct growth by chemical vapor deposition and application to high-resolution imaging. Proc. Natl. Acad. Sci. USA 2000, 97, 3809–3813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Cheng, H.M. Carbon nanotubes: Controlled growth and application. Mater. Today 2013, 16, 219–228. [Google Scholar] [CrossRef]
- Cumings, J.; Zettl, A. Low-Friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 2000, 289, 602–604. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.W.; Kwon, O.K.; Lee, J.H.; Choi, Y.G.; Hwang, H.J. Frequency change by inter-walled length difference of double-wall carbon nanotube resonator. Solid State Commun. 2009, 149, 1574–1577. [Google Scholar] [CrossRef]
- Zhao, J.; He, M.R.; Dai, S.; Huang, J.Q.; Wei, F.; Zhu, J. TEM observations of buckling and fracture modes for compressed thick multiwall carbon nanotubes. Carbon 2011, 49, 206–213. [Google Scholar] [CrossRef]
- Kuzumaki, T.; Mitsuda, Y. Nanoscale mechanics of carbon nanotube evaluated by nanoprobe manipulation in transmission electron microscope. Jpn. J. Appl. Phys. 2006, 45, 364–368. [Google Scholar] [CrossRef]
- Misra, A.; Tyagi, P.K.; Rai, P.; Mahopatra, D.R.; Ghatak, J.; Satyam, P.V.; Avasthi, D.K.; Misra, D.S. Axial buckling and compressive behavior of nickel-encapsulated multiwalled carbon nanotubes. Phys. Rev. B 2007, 76, 014108. [Google Scholar] [CrossRef]
- Shima, H. Buckling of carbon nanotubes: A state of the art review. Materials 2012, 5, 47–84. [Google Scholar] [CrossRef]
- Shi, J.X.; Natsuki, T.; Lei, X.W.; Ni, Q.-Q. Buckling instability of carbon nanotube AFM probe clamped in an elastic medium. ASME J. Nanotechnol. Eng. Med. 2012, 3, 020903. [Google Scholar] [CrossRef]
- Pantano, A.; Boyce, M.C.; Parks, D.M. Mechanics of axial compression of single-and Multi-wall carbon nanotubes. ASME J. Eng. Mater. Technol. 2004, 126, 279–284. [Google Scholar] [CrossRef]
- Ru, C.Q. Axially compressed buckling of a double walled carbon nanotube embedded in an elastic medium. J. Mech. Phys. Solids 2001, 49, 1265–1279. [Google Scholar] [CrossRef]
- Natsuki, T.; Tsuchiya, T.; Ni, Q.-Q.; Endo, M. Torsional elastic instability of double-walled carbon nanotubes. Carbon 2010, 48, 4362–4368. [Google Scholar] [CrossRef]
- Arroyo, M.; Belytschko, T. Nonlinear mechanical response and rippling of thick multiwalled carbon nanotubes. Phys. Rev. Lett. 2003, 91, 215505. [Google Scholar] [CrossRef] [PubMed]
- Natsuki, T.; Fujita, N.; Ni, Q.-Q.; Endo, M. Buckling properties of carbon nanotubes under hydrostatic pressure. J. Appl. Phys. 2009, 106, 084310. [Google Scholar] [CrossRef]
- Yakobson, B.I.; Brabec, C.J.; Bernholc, J. Nanomechanics of carbon tubes: Instabilities beyond linear response. Phys. Rev. Lett. 1996, 76, 2511–2514. [Google Scholar] [CrossRef] [PubMed]
- Silvestre, N. On the accuracy of shell models for torsional buckling of carbon nanotubes. Eur. J. Mech.-A/Solids 2012, 32, 103–108. [Google Scholar] [CrossRef]
- Hu, Y.G.; Liew, K.M.; Wang, Q.; He, X.Q.; Yakobson, B.I. Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes. J. Mech. Phys. Solids 2008, 56, 3475–3485. [Google Scholar] [CrossRef]
- Ru, C.Q. Effect of van der Waals forces on axial buckling of a double walled Carbon nanotube. J. Appl. Phys. 2000, 87, 7227–7231. [Google Scholar] [CrossRef]
- Ansari, R.; Rouhi, H. Nonlocal Flugge shell model for the axial buckling of single-walled Carbon nanotubes: An analytical approach. Int. J. Nano Dimens. 2015, 6, 453–462. [Google Scholar]
- He, X.Q.; Kitipornchai, S.; Liew, K.M. Buckling analysis of multiwalled carbon nanotubes: A continuum model accounting for van der Waals interaction. J. Mech. Phys. Solids 2005, 53, 303–326. [Google Scholar] [CrossRef]
- Ru, C.Q. Column buckling of multiwalled carbon nanotubes with interlayer radial displacements. Phys. Rev. B 2000, 62, 16962–16967. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Liu, X.; Zhao, J.H. Influence of temperature change on column buckling of multiwalled carbon nanotubes. Phys. Lett. A 2008, 372, 1676–1681. [Google Scholar] [CrossRef]
- Natsuki, T.; Ni, Q.Q.; Endo, M. Stability analysis of double-walled carbon nanotubes as AFM probes based on a continuum model. Carbon 2011, 49, 2532–2537. [Google Scholar] [CrossRef]
- Stevens, R.M. New carbon nanotube AFM probe technology. Mater. Today 2009, 12, 42–45. [Google Scholar] [CrossRef]
- Aqel, A.; El-Nour, K.M.M.A.; Ammar, R.A.A.; Al-Warthan, A. Carbon nanotubes, science and technology part (I) structure, synthesis and characterization. Arabian J. Chem. 2012, 5, 1–23. [Google Scholar] [CrossRef]
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Natsuki, T. Carbon Nanotube-Based Nanomechanical Sensor: Theoretical Analysis of Mechanical and Vibrational Properties. Electronics 2017, 6, 56. https://doi.org/10.3390/electronics6030056
Natsuki T. Carbon Nanotube-Based Nanomechanical Sensor: Theoretical Analysis of Mechanical and Vibrational Properties. Electronics. 2017; 6(3):56. https://doi.org/10.3390/electronics6030056
Chicago/Turabian StyleNatsuki, Toshiaki. 2017. "Carbon Nanotube-Based Nanomechanical Sensor: Theoretical Analysis of Mechanical and Vibrational Properties" Electronics 6, no. 3: 56. https://doi.org/10.3390/electronics6030056
APA StyleNatsuki, T. (2017). Carbon Nanotube-Based Nanomechanical Sensor: Theoretical Analysis of Mechanical and Vibrational Properties. Electronics, 6(3), 56. https://doi.org/10.3390/electronics6030056