Optimal Capacity Configuration of Photovoltaic-Storage Power Stations Based on an Improved Sparrow Search Algorithm
Abstract
1. Introduction
2. Capacity Configuration Model of a Photovoltaic–Energy Storage Power Station
2.1. Equivalent Full-Cycle Lifetime Model of Energy Storage
2.2. Demand Response Model Considering a Real-Time Electricity Pricing Mechanism
2.3. Objective Function
2.3.1. Minimization of Comprehensive Cost
2.3.2. Power Supply Reliability
2.4. Constraints
3. Operation Strategy
4. Improved SSA Algorithm
4.1. Improved Sparrow Search Algorithm
4.1.1. Tent Mapping and Opposition-Based Learning for Population Initialization
4.1.2. Adaptive Inertia Weight
4.1.3. Follower Update Strategy Incorporating Harris Hawks Local Encircling Predation
4.2. Algorithm Testing
5. Case Study Analysis
5.1. Simulation Data and Parameter Settings
5.2. Simulation Results Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| SSA | Sparrow Search Algorithm |
| ISSA | Improved Sparrow Search Algorithm |
| HESSA | Harris Hawks Optimization Enhanced Sparrow Search Algorithm |
| GWO | Grey Wolf Optimizer |
| PSO | Particle Swarm Optimization |
Appendix A

References
- Yang, J.; Su, C. Robust optimization of microgrid based on renewable distributed power generation and load demand uncertainty. Energy 2021, 223, 120043. [Google Scholar] [CrossRef]
- Huang, D.W.; Yin, H.; Cao, X.D.; Yang, M. Capacity allocation of rooftop integrated photovoltaic-storage systems considering source-load uncertainty. Acta Energiae Solaris Sin. 2024, 45, 363–372. [Google Scholar]
- Zhang, Y.Y.; Liu, Z.Y.; Meng, J.J.; Bi, Y.; Sun, W. Research on optimal configuration and operation control of distributed photovoltaic energy storage systems. Energy Storage Sci. Technol. 2025, 14, 3917–3919. [Google Scholar]
- Li, J.L.; Di, W.F.; Li, Y.X.; Guo, Y.J.; Yuan, X.D. Partitioned optimal allocation of energy storage in distribution networks with high PV penetration. J. Electr. Eng. 2024, 19, 13–23. [Google Scholar]
- Meng, X.; Guo, Q.M.; Li, Y.H.; Liu, J.C. Multi-objective optimal allocation of hybrid energy storage capacity considering bidirectional demand. Acta Energiae Solaris Sin. 2023, 44, 45–53. [Google Scholar]
- Yang, X.Y.; Yang, C.; Peng, J.; Miu, G.; Yuan, S.W. Coordinated optimal dispatch method of wind-thermal-storage system considering cycling mileage cost of energy storage. Acta Energiae Solaris Sin. 2024, 45, 122–130. [Google Scholar]
- Chen, J.W.; Shan, X.; Wang, J.F.; Sun, X.C.; Jiang, Y.J. Optimal configuration of user-side energy storage considering demand response under time-of-use electricity pricing. J. Shaanxi Univ. Sci. Technol. 2024, 42, 167–176. [Google Scholar]
- Li, S.Q.; Gao, Z.H.; Qiao, J.X.; Wu, J.H. Capacity optimization configuration of microgrid based on improved sparrow search algorithm. Acta Energiae Solaris Sin. 2025, 5, 1–10. [Google Scholar]
- Xiao, X.Y.; Fan, C.G.; Guo, F.; Yang, T.X.; Wang, D.; Huang, Y.H. Research on optimal configuration of energy storage station sizing and siting based on improved multi-objective particle swarm optimization algorithm. Energy Storage Sci. Technol. 2024, 13, 503–514. [Google Scholar]
- Lai, J.J.; Wen, X.L.; Zhang, Q.; Wang, J. Capacity optimization configuration of DC microgrid based on improved sparrow search algorithm. Acta Energiae Solaris Sin. 2023, 44, 157–163. [Google Scholar]
- Zhao, C.; Fu, B.; Lin, L. Economic optimal scheduling of microgrid with electric vehicles based on improved salp swarm algorithm. Control Theory Appl. 2025, 42, 167–180. [Google Scholar]
- Zhou, H.; Zhang, Y.; Xiao, L.X.; Zhao, G.H. Economic optimal scheduling of microgrid clusters based on improved bald eagle search algorithm. Acta Energiae Solaris Sin. 2024, 45, 328–335. [Google Scholar]
- Liu, Y.W.; Sun, J.; Shang, Y.L.; Zhang, X.; Ren, S.; Wang, D. A novel remaining useful life prediction method for lithium-ion battery based on long short-term memory network optimized by improved sparrow search algorithm. J. Energy Storage 2023, 61, 106645. [Google Scholar] [CrossRef]
- Li, Z.; Guo, J.F.; Gao, X.Y.; Yang, X.; He, Y.-L. A multi-strategy improved sparrow search algorithm of large-scale refrigeration system: Optimal loading distribution of chillers. Appl. Energy 2023, 349, 121623. [Google Scholar] [CrossRef]
- Duggal, I.; Venkatesh, B. Short-term scheduling of thermal generators and battery storage with depth of discharge-based cost model. IEEE Trans. Power Syst. 2015, 30, 2110–2118. [Google Scholar] [CrossRef]
- Wang, Z.S.; Chen, J.J.; Zhu, J.Q.; Ye, H.F. Optimal allocation and operation strategy of energy storage considering cycle life. Electr. Power Autom. Equip. 2021, 41, 75–81. [Google Scholar]
- Chen, A.W.; Hua, H.R.; Li, P.; Su, Y.F. Optimal operation method of AC/DC hybrid microgrid under real-time pricing mechanism. Power Syst. Prot. Control 2017, 45, 13–20. [Google Scholar]
- Xing, Y.H.; Ren, T.T. Application of improved MOPSO in optimal scheduling of microgrid. Acta Energiae Solaris Sin. 2024, 45, 191–200. [Google Scholar]
- Liu, J.; Ding, T.X.; Du, T.; Du, J.; Zhang, Y.; Bai, Z.; Yang, L.; Chen, F. An economic dispatch model for industrial parks considering energy storage battery life. Power Syst. Clean Energy 2024, 40, 105–112. [Google Scholar]
- Ding, Y.S. Research on Optimal Configuration and Coordinated Operation of DC Microgrid. Ph.D. Thesis, Harbin Institute of Technology, Harbin, China, 2017. [Google Scholar]
- Xue, J.K.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control Eng. 2020, 8, 22–34. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Q.L.; Ai, H.T.; Zhang, T.; Zhang, H. Research on optimal scheduling algorithm for household loads based on demand response. Acta Energiae Solaris Sin. 2024, 45, 131–139. [Google Scholar]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications. Future Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]





| Function Type | Benchmark Function | Dimension | Search Range | Optimal Value |
|---|---|---|---|---|
| High-dimensional unimodal | 30 | [−10, 10] | 0 | |
| Low-dimensional multimodal | 2 | [−65, 65] | 1.0000 | |
| High-dimensional multimodal | 30 | [−32, 32] | 0 | |
| Low-dimensional multimodal | 4 | [0, 10] | −10.5363 |
| Function | Algorithm | Best Value | Mean Value | Standard Deviation |
|---|---|---|---|---|
| F1 | SSA | 2.0775 × 10−38 | 2.5556 × 10−36 | 7.9125 × 10−37 |
| ISSA | 0 | 0 | 0 | |
| HESSA | 0 | 0 | 0 | |
| GWO | 1.7217 × 10−33 | 7.3725 × 10−33 | 1.5528 × 10−32 | |
| PSO | 9.0244 × 10−16 | 9.6687 × 10−15 | 1.0479 × 10−14 | |
| F2 | SSA | 4.372 | 4.0288 | 3.1136 |
| ISSA | 0.998 | 0.998 | 0.5616 | |
| HESSA | 0.998 | 0.998 | 0 | |
| GWO | 4.268 | 4.2954 | 3.8882 | |
| PSO | 1.992 | 3.626 | 3.3735 | |
| F3 | SSA | 4.4409 × 10−16 | 4.4409 × 10−16 | 0 |
| ISSA | 4.4409 × 10−16 | 4.4409 × 10−16 | 0 | |
| HESSA | 4.4409 × 10−16 | 4.4409 × 10−16 | 0 | |
| GWO | 7.8604 × 10−14 | 1.0110 × 10−13 | 1.6176 × 10−14 | |
| PSO | 0.32622 | 0.36223 | 0.63916 | |
| F4 | SSA | −5.1285 | −9.0943 | 2.5206 |
| ISSA | −10.5364 | −10.5364 | 0.98735 | |
| HESSA | −10.5364 | −10.5364 | 2.07 × 10−11 | |
| GWO | −10.5347 | −10.2647 | 8.5116 × 10−4 | |
| PSO | −10.5364 | −9.8201 | 2.7263 |
| Period | Time Interval | Purchase Price (CNY/kWh) | Selling Price (CNY/kWh) |
|---|---|---|---|
| Off-peak period | 23:00–07:00 | 0.48 | 0.68 |
| Peak period | 09:00–11:00 19:00–23:00 | 1.35 | |
| Flat period | 08:00–09:00 12:00–18:00 | 0.90 |
| Source | Rated Parameter (System Voltage) | Investment Cost (104 CNY) | O&M Cost (104 CNY) | Replacement Cost (104 CNY) | Lifetime (Years) |
|---|---|---|---|---|---|
| Photovoltaic | 1 kW | 0.30 | 0.002 | 0.20 | 20 |
| Battery energy storage | 96 V, 280 Ah | 3.20 | 0.04 | 2.80 | 10 |
| Optimization Algorithm | Number of PV Modules | Number of Battery Packs | Annual Equivalent Comprehensive Cost (104 CNY) | Energy Imbalance Rate (%) |
|---|---|---|---|---|
| SSA | 647 | 113 | 1338.6218 | 3.74 |
| HESSA | 583 | 102 | 1253.0293 | 2.46 |
| GWO | 643 | 105 | 1352.4330 | 4.87 |
| PSO | 550 | 122 | 1310.4203 | 5.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhang, L.; Zhao, W.; Zeng, J.; Liu, J. Optimal Capacity Configuration of Photovoltaic-Storage Power Stations Based on an Improved Sparrow Search Algorithm. Electronics 2026, 15, 656. https://doi.org/10.3390/electronics15030656
Zhang L, Zhao W, Zeng J, Liu J. Optimal Capacity Configuration of Photovoltaic-Storage Power Stations Based on an Improved Sparrow Search Algorithm. Electronics. 2026; 15(3):656. https://doi.org/10.3390/electronics15030656
Chicago/Turabian StyleZhang, Luting, Wei Zhao, Jinhui Zeng, and Jie Liu. 2026. "Optimal Capacity Configuration of Photovoltaic-Storage Power Stations Based on an Improved Sparrow Search Algorithm" Electronics 15, no. 3: 656. https://doi.org/10.3390/electronics15030656
APA StyleZhang, L., Zhao, W., Zeng, J., & Liu, J. (2026). Optimal Capacity Configuration of Photovoltaic-Storage Power Stations Based on an Improved Sparrow Search Algorithm. Electronics, 15(3), 656. https://doi.org/10.3390/electronics15030656
