Wideband 1-Bit Reconfigurable Transmitarray Using a Substrate-Integrated Cavity-Backed Patch Element
Abstract
1. Introduction
2. RTA Element Design
2.1. Structure of RTA Element
2.2. Work Mechanism and Simulated Results of RTA Element
3. RTA Design and Measurement
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Singh, A.; Dubey, R.; Srivastava, S.K.; Meshram, M.K. Circular polarization-agile and beam switching enabled reconfigurable cavity-backed antenna. AEU-Int. J. Electron. Commun. 2023, 165, 154664. [Google Scholar] [CrossRef]
- Wang, S.R.; Chen, M.Z.; Ke, J.C.; Cheng, Q.; Cui, T.J. Asynchronous Space-Time-Coding Digital Metasurface. Adv. Sci. 2022, 9, 2200106. [Google Scholar] [CrossRef]
- Clemente, A.; Dussopt, L.; Sauleau, R.; Potier, P.; Pouliguen, P. Wideband 400-element electronically reconfigurable transmitarray in X band. IEEE Trans. Antennas Propag. 2013, 61, 5017–5027. [Google Scholar] [CrossRef]
- Chen, K.; Feng, Y.; Monticone, F.; Zhao, J.; Zhu, B.; Jiang, T.; Zhang, L.; Kim, Y.; Ding, X.; Zhang, S.; et al. A Reconfgurable Active Huygens’ Metalens. Adv. Mater. 2017, 29, 1606422. [Google Scholar] [CrossRef]
- Reis, J.R.; Caldeirinha, R.F.S.; Hammoudeh, A.; Copner, N. Electronically Reconfgurable FSS Inspired Transmitarray for 2-D Beamsteering. IEEE Trans. Antennas Propag. 2017, 65, 4880–4885. [Google Scholar] [CrossRef]
- Huang, C.; Pan, W.; Luo, X. Low-Loss Circularly Polarized Transmitarray for Beam Steering Application. IEEE Trans. Antennas Propag. 2016, 64, 4471–4476. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, S.; Yang, F.; Li, M. A Novel 1 Bit Wide Angle Beam Scanning Reconfigurable Transmitarray Antenna Using an Equivalent Magnetic Dipole Element. IEEE Trans. Antennas Propag. 2020, 68, 5691–5695. [Google Scholar] [CrossRef]
- Li, P.; Yu, H.; Su, J.; Song, L.; Guo, Q.; Li, Z. A Low-RCS Multifunctional Shared Aperture with Wideband Reconfigurable Reflectarray Antenna and Tunable Scattering Characteristic. IEEE Trans. Antennas Propag. 2022, 71, 621–630. [Google Scholar] [CrossRef]
- Pan, X.; Yang, F.; Xu, S.; Li, M. A 10240-Element Reconfigurable Reflectarray with Fast Steerable Monopulse Patterns. IEEE Trans. Antennas Propag. 2021, 69, 173–181. [Google Scholar] [CrossRef]
- Han, J.; Li, L.; Liu, G.; Wu, Z.; Shi, Y. A Wideband 1 bit 12 × 12 Reconfigurable Beam-Scanning Reflectarray: Design, Fabrication, and Measurement. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1268–1272. [Google Scholar] [CrossRef]
- Cao, X.; Chen, Q.; Tanaka, T.; Kozai, M.; Minami, H. A 1-bit Time-Modulated Reflectarray for Reconfigurable-Intelligent-Surface Applications. IEEE Trans. Antennas Propag. 2022, 71, 2396–2408. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, X.; Wang, Z.; Ge, Y.; Pu, J. A 1-Bit Electronically Reconfigurable Reflectarray Antenna in X Band. IEEE Access 2019, 7, 66567–66575. [Google Scholar] [CrossRef]
- Mu, H.; Ding, C.; Meng, F.; Zhang, Y.; Wang, J. Cosinusoidal Phase Modulation Jamming Using Tunable Metasurface Against SAR–GMTI. IEEE Trans. Antennas Propag. 2025, 73, 9429–9444. [Google Scholar] [CrossRef]
- Ding, C.; Mu, H.; Shi, Y.; Wu, Z.; Fu, X.; Zhu, R.; Cai, T.; Meng, F.; Wang, J. Dual-Polarized and Conformal Time-Modulated Metasurface-Based 2-D Jamming Against SAR Imaging Systems. IEEE Trans. Antennas Propag. 2025, 73, 7752–7764. [Google Scholar] [CrossRef]
- Ding, C.; Mu, H.; Meng, Y.; Zhao, M.; Zhang, Y.; Cai, T.; Meng, F.; Wang, J. Time-Modulated Metasurface-Assisted Moving Target Jamming for Synthetic Aperture Radar. IEEE Trans. Microw. Theory Tech. 2025, 73, 4191–4203. [Google Scholar] [CrossRef]
- Huang, C.; Pan, W.; Ma, X.; Luo, X. 1-Bit Reconfigurable Circularly Polarized Transmitarray in X-Band. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 448–451. [Google Scholar] [CrossRef]
- Palma, L.D.; Clemente, A.; Dussopt, L.; Sauleau, R.; Potier, P.; Pouliguen, P. Radiation pattern synthesis for monopulse radar applications with a reconfigurable transmitarray antenna. IEEE Trans. Antennas Propag. 2016, 64, 4148–4154. [Google Scholar] [CrossRef]
- Liu, B.; Wong, S.-W.; Tam, K.-W.; Zhang, X.; Li, Y. Multifunctional Orbital Angular Momentum Generator with High-Gain Low-Profile Broadband and Programmable Characteristics. IEEE Trans. Antennas Propag. 2022, 70, 1068–1076. [Google Scholar] [CrossRef]
- Jabbar, A.; Elsayed, M.; Kazim, J.U.R.; Pang, Z.; Le Kernec, J.; Imran, M.A.; Abbasi, Q.H.; Ur-Rehman, M. 60 GHz Programmable Dynamic Metasurface Antenna (DMA) for Next-Generation Communication, Sensing, and Imaging Applications: From Concept to Prototype. IEEE Open J. Antennas Propag. 2024, 5, 705–726. [Google Scholar] [CrossRef]
- Bashir, G.; Singh, A.K.; Dubey, A. Beam-Switching Digital Metasurface Reflectarray Antenna with Extreme Offset Illumination for Satellite Communications. IEEE J. Miniaturization Air Space Syst. 2024, 5, 221–227. [Google Scholar] [CrossRef]
- Li, T.-J.; Wang, G.-M.; Guo, W.-L.; Xin, K.-W.; Han, J.-Q.; Li, H.-P. Reconfigurable Folded Transmitarray Antenna with Low-Profile Based on Metasurfaces. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 611–615. [Google Scholar] [CrossRef]
- Wang, X.; Qin, P.-Y.; Le, A.T.; Zhang, H.; Jin, R.; Guo, Y.J. Beam Scanning Transmitarray Employing Reconfigurable Dual-Layer Huygens Element. IEEE Trans. Antennas Propag. 2022, 70, 7491–7500. [Google Scholar] [CrossRef]
- Yu, H.; Su, J.; Li, Z.; Yang, F. A Novel Wideband and High-Efficiency Electronically Scanning Transmitarray Using Transmission Metasurface Polarizer. IEEE Trans. Antennas Propag. 2022, 70, 3088–3093. [Google Scholar] [CrossRef]
- Wang, M.; Xu, S.; Yang, F.; Li, M. Design and Measurement of a 1-bit Reconfigurable Transmitarray with Subwavelength H-Shaped Coupling Slot Elements. IEEE Trans. Antennas Propag. 2019, 67, 3500–3504. [Google Scholar] [CrossRef]
- Wang, M.; Xu, S.; Yang, F.; Hu, N.; Xie, W.; Chen, Z. A Novel 1-Bit Reconfigurable Transmitarray Antenna Using a C-Shaped Probe-Fed Patch Element with Broadened Bandwidth and Enhanced Efficiency. IEEE Access 2020, 8, 120124–120133. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, S.; Yang, F.; Werner, D.H. 1 Bit Dual-Linear Polarized Reconfigurable Transmitarray Antenna Using Asymmetric Dipole Elements with Parasitic Bypass Dipoles. IEEE Trans. Antennas Propag. 2021, 69, 1188–1192. [Google Scholar] [CrossRef]
- Gao, W.H.; Chen, M.; Cheng, Q.; Shao, R.W.; Liang, J.C.; Gao, Y.; Cui, T.J. 1-bit reconfigurable transmitarray with low loss and wide bandwidth. New J. Phys. 2021, 23, 065006. [Google Scholar] [CrossRef]
- Tian, J.; Yang, H.; Li, T.; Zhang, Z.; Han, J.; Cao, X. Realization and Analysis of Low-Loss Reconfigurable Quasi-Periodic Coding Metasurfaces for Low-Cost Single-Beam Scanning. IEEE Trans. Microw. Theory Tech. 2024, 72, 5071–5081. [Google Scholar] [CrossRef]
- Shi, H.; Liu, R.; Zhang, Z.; Chen, X.; Wang, L.; Yi, J.; Liu, H.; Zhang, A. A Dual-Polarized Reflective Reconfigurable Metasurface with Stable Amplitude Based on Guided-Wave-Driven Structure. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 1720–1724. [Google Scholar] [CrossRef]
- Zeng, Y.; Wang, W.; Yi, Z.; Mei, Z.; Niu, T. A Multifunctional 60 GHz Band Reconfigurable Reflective Metasurface with Z-Shaped Bias Line. IEEE Antennas Wirel. Propag. Lett. 2025, 24, 3405–3409. [Google Scholar] [CrossRef]
- Yin, S.-Y.; Li, J.-L. Reconfigurable Antenna with Uni- and Bi-directional Radiation Patterns Based on Metasurface and Fresnel Zone Plate Lens. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 2291–2295. [Google Scholar] [CrossRef]
- Baena-Molina, M.; Palomares-Caballero, Á.; Martínez-García, G.; Galeote-Cazorla, J.E.; Ramírez-Arroyo, A.; Valenzuela-Valdés, J.F. 1-Bit Mechanically Reconfigurable Metasurface as a Beam Splitter for Indoor Environments at 28 GHz. IEEE Antennas Wirel. Propag. Lett. 2025, 24, 4313–4317. [Google Scholar] [CrossRef]
- Córcoles, J.; González, M.; Rubio, J.; Zapata, J. Performance Characterization of Wideband, Wide-Angle Scan Arrays of Cavity-Backed U-Slot Microstrip Patch Antennas. Int. J. Rf Microw. Comput. Eng. 2009, 19, 389–396. [Google Scholar] [CrossRef]
- Awida, M.H.; Kamel, A.H.; Fathy, A.E. Analysis and Design of Wide-Scan Angle Wide-Band Phased Arrays of Substrate-Integrated Cavity-Backed Patches. IEEE Trans. Antennas Propag. 2013, 61, 3034–3041. [Google Scholar] [CrossRef]
- Li, H.; Ma, C.; Zhou, T.; Wang, J.; Ye, D.; Sun, Y.; Zhu, W.; Denidni, T.A.; Ran, L. Reconfigurable Fresnel Lens Based on an Active Second-Order Bandpass Frequency-Selective Surface. IEEE Trans. Antennas Propag. 2020, 68, 4054–4059. [Google Scholar] [CrossRef]
- Xiao, S.; Zheng, C.; Li, M.; Xiong, J.; Wang, B.-Z. Varactor-Loaded Pattern Reconfigurable Array for Wide-Angle Scanning with Low Gain Fluctuation. IEEE Trans. Antennas Propag. 2015, 63, 2364–2369. [Google Scholar] [CrossRef]
- Jiang, T.; Wang, Z.; Li, D.; Pan, J.; Zhang, B.; Huangfu, J.; Salamin, Y.; Li, C.; Ran, L. Low-DC Voltage-Controlled Steering-Antenna Radome Utilizing Tunable Active Metamaterial. IEEE Trans. Microw. Theory Tech. 2012, 60, 170–178. [Google Scholar] [CrossRef]











| Ref. No. | Freq. (GHz) | Array Size ( × ) | Gain (dBi) | Transmission BW | Aperture eff. | 3 dB Gain BW |
|---|---|---|---|---|---|---|
| [21] | 5.8 | 3.48 × 3.48 | 13.4 | 3 dB IL:12% | 14.4% | 13.8% |
| [23] | 10.0 | 5.0 × 5.0 | 19.1 | 1 dB IL:16% | 25.8% | 15.9% |
| [24] | 12.5 | 5.3 × 5.3 | 17.0 | 3 dB IL:10.3% | 14.0% | 9.6% |
| [25] | 12.2 | 16 × 16 | 22.1 | 3 dB IL:16% | 21.2% | 12.3% |
| [26] | 12.2 | 4.88 × 4.88 | 18.3 | 3 dB IL:18.4% | 22.6% | 11.5% |
| This paper | 4.6 | 5 × 5 | 16.6 | 3 dB IL:33.6% | 17.2% | 18.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Tian, X.; Mu, H.; Shi, Y.; Guan, C.; Ding, C.; Song, L.; Song, B. Wideband 1-Bit Reconfigurable Transmitarray Using a Substrate-Integrated Cavity-Backed Patch Element. Electronics 2026, 15, 200. https://doi.org/10.3390/electronics15010200
Tian X, Mu H, Shi Y, Guan C, Ding C, Song L, Song B. Wideband 1-Bit Reconfigurable Transmitarray Using a Substrate-Integrated Cavity-Backed Patch Element. Electronics. 2026; 15(1):200. https://doi.org/10.3390/electronics15010200
Chicago/Turabian StyleTian, Xiuwen, Huilin Mu, Yunzhou Shi, Chunsheng Guan, Chang Ding, Lizhong Song, and Baojun Song. 2026. "Wideband 1-Bit Reconfigurable Transmitarray Using a Substrate-Integrated Cavity-Backed Patch Element" Electronics 15, no. 1: 200. https://doi.org/10.3390/electronics15010200
APA StyleTian, X., Mu, H., Shi, Y., Guan, C., Ding, C., Song, L., & Song, B. (2026). Wideband 1-Bit Reconfigurable Transmitarray Using a Substrate-Integrated Cavity-Backed Patch Element. Electronics, 15(1), 200. https://doi.org/10.3390/electronics15010200

