SSA-VMD-Double-Fuzzy-Logic for Human Vital Signs Detection Using a UWB Radar
Abstract
:1. Introduction
2. Modeling for UWB Radar Signal
3. Vital Sign Frequency Estimation Using SVDF
3.1. Preprocessing
3.1.1. Clutter Rejection
3.1.2. Range-Gate Selection
3.1.3. Singular Spectrum Analysis (SSA)
3.2. Variational Mode Decomposition
3.3. Double Fuzzy Logic System
- (1)
- IF , THEN .
- (2)
- IF , , THEN .
- (3)
- IF , , , THEN .
- (4)
- IF , , , THEN .
4. Results and Discussions
4.1. Experimental Environment and Criteria
4.2. Frontal Detection at Various Distances
4.3. 45° Orientation Detection at Different Distances
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kebe, M.; Gadhafi, R.; Mohammad, B.; Sanduleanu, M.; Saleh, H.; Al-Qutayri, M. Human vital signs detection methods and potential using radars: A review. Sensors 2020, 20, 1454. [Google Scholar] [CrossRef] [PubMed]
- Fang, K.; Wang, W.; Woźniak, M.; Zhang, Q.; Yu, K.; Chen, J.; Tolba, A.; Zhang, L. Guest Editorial AI-Empowered Internet of Things for Data-Driven Psychophysiological Computing and Patient Monitoring. IEEE J. Biomed. Health Inform. 2024, 28, 2496–2499. [Google Scholar] [CrossRef]
- Wilding, M.; Ischebeck, A.; Zaretskaya, N. Respiration recording for fMRI: Breathing belt versus spine coil sensor. Imaging Neurosci. 2024, 2, 1–11. [Google Scholar] [CrossRef]
- Sun, H.; Ganglberger, W.; Panneerselvam, E.; Leone, M.J.; Quadri, S.A.; Goparaju, B.; Tesh, R.A.; Akeju, O.; Thomas, R.J.; Westover, M.B. Sleep staging from electrocardiography and respiration with deep learning. Sleep 2020, 43, zsz306. [Google Scholar] [CrossRef] [PubMed]
- Sel, K.; Brown, A.; Jang, H.; Krumholz, H.M.; Lu, N.; Jafari, R. A wrist-worn respiration monitoring device using bio-impedance. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 3989–3993. [Google Scholar]
- Li, L.; Tan, A.E.C.; Jhamb, K.; Rambabu, K. Buried object characterization using ultra-wideband ground penetrating radar. IEEE Trans. Microw. Theory Tech. 2012, 60, 2654–2664. [Google Scholar] [CrossRef]
- Liu, J. Research on Application of UWB Wireless Communication System Based on Multi-antenna Array in Mine Emergency Rescue. In Proceedings of the 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), Taiyuan, China, 18–21 July 2019; pp. 1–3. [Google Scholar]
- Tian, B.; Liu, W.; Mo, H.; Li, W.; Wang, Y.; Adhikari, B.R. Detecting the unseen: Understanding the mechanisms and working principles of earthquake sensors. Sensors 2023, 23, 5335. [Google Scholar] [CrossRef] [PubMed]
- Džunda, M.; Dzurovčin, P.; Kal’avskỳ, P.; Korba, P.; Cséfalvay, Z.; Hovanec, M. The UWB radar application in the aviation security systems. Appl. Sci. 2021, 11, 4556. [Google Scholar] [CrossRef]
- Forcier, B. Unattended wireless proximity sensor networks for counterterrorism, force protection, littoral environments, PHM, and tamper monitoring ground applications. In Proceedings of the Unattended Ground Sensor Technologies and Applications V, Orlando, FL, USA, 21–25 April 2003; Volume 5090, pp. 485–492. [Google Scholar]
- Lande, T.S.; Hjortland, H.A. Impulse Radio technology for Biomedical applications. In Proceedings of the 2007 IEEE Biomedical Circuits and Systems Conference, Montreal, QC, Canada, 27–30 November 2007; pp. 67–70. [Google Scholar]
- Dragomiretskiy, K.; Zosso, D. Variational mode decomposition. IEEE Trans. Signal Process. 2013, 62, 531–544. [Google Scholar] [CrossRef]
- Duan, Z.; Liang, J. Non-contact detection of vital signs using a UWB radar sensor. IEEE Access 2018, 7, 36888–36895. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Z.; Kong, Y.; Li, C. Mutual interference suppression using signal separation and adaptive mode decomposition in noncontact vital sign measurements. IEEE Trans. Instrum. Meas. 2021, 71, 4001015. [Google Scholar] [CrossRef]
- Pan, T.; Guo, Y.; Guo, W.; Kang, C. Detection of vital sign based on UWB radar by a time domain coherent accumulation method. IEEE Sens. J. 2023, 23, 17054–17063. [Google Scholar] [CrossRef]
- Yu, H.; Huang, W.; Du, B. SSA-VMD for UWB radar sensor vital sign extraction. Sensors 2023, 23, 756. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Guo, S.; Cui, G.; Zhou, X.; Shi, L.; Kong, L.; Yang, X. Multidomain separation for human vital signs detection with fmcw radar in interference environment. IEEE Trans. Microw. Theory Tech. 2023, 72, 4278–4293. [Google Scholar] [CrossRef]
- Nguyen, V.; Javaid, A.Q.; Weitnauer, M.A. Harmonic Path (HAPA) algorithm for non-contact vital signs monitoring with IR-UWB radar. In Proceedings of the 2013 IEEE Biomedical Circuits and Systems Conference (BioCAS), Rotterdam, The Netherlands, 31 October–2 November 2013; pp. 146–149. [Google Scholar]
- Nguyen, V.; Javaid, A.Q.; Weitnauer, M.A. Spectrum-averaged Harmonic Path (SHAPA) algorithm for non-contact vital sign monitoring with ultra-wideband (UWB) radar. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 2241–2244. [Google Scholar]
- Zhang, Y.; Li, X.; Qi, R.; Qi, Z.; Zhu, H. Harmonic multiple loop detection (HMLD) algorithm for not-contact vital sign monitoring based on ultra-wideband (UWB) radar. IEEE Access 2020, 8, 38786–38793. [Google Scholar] [CrossRef]
- Jing, F.; Liang, J.; Wang, Y.; Chen, P. Harmonics and intermodulation products-based fuzzy logic (HIPBFL) algorithm for vital sign frequency estimation using a UWB radar. Expert Syst. Appl. 2023, 228, 120294. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Zadeh, L. A rationale for fuzzy control. In Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by Lotfi A Zadeh; World Scientific: Singapore, 1996; pp. 123–126. [Google Scholar]
- Zadeh, L.A. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 28–44. [Google Scholar] [CrossRef]
- Choi, I.; Kim, M.; Choi, J.; Park, J.; Park, S.; Kim, K. Robust cardiac rate estimation of an individual. IEEE Sens. J. 2021, 21, 15053–15064. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, J. Robust Non-Contact Vital Signs Extraction Based on UWB Radar. In Proceedings of the IGARSS 2024—2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 7–12 July 2024; pp. 8472–8476. [Google Scholar]
- Yan, J.; Hong, H.; Zhao, H.; Li, Y.; Gu, C.; Zhu, X. Through-wall multiple targets vital signs tracking based on VMD algorithm. Sensors 2016, 16, 1293. [Google Scholar] [CrossRef] [PubMed]
Rule | Frequency Difference | Amplitude | Confidence |
---|---|---|---|
1 | small | small | medium |
2 | medium | small | low |
3 | large | small | very low |
4 | small | medium | high |
5 | medium | medium | medium |
6 | large | medium | low |
7 | small | large | very high |
8 | medium | large | high |
9 | large | large | medium |
Parameter | Value |
---|---|
Detection Range | 0.2–5 m |
Center Frequency | 7.29 GHz |
Bandwidth | 1.5 GHz |
Sampling Rate | 23.328 GS/s |
Range Resolution | 0.535 cm |
Acquisition Frame Rate | 20 fps |
Acquisition Time | 2 min |
Volunteer | Target 1 | Target 2 | Target 3 | Target 4 | Target 5 | Target 6 | Target 7 | Target 8 |
---|---|---|---|---|---|---|---|---|
Gender | Male | Male | Male | Male | Male | Female | Female | Female |
Age | 25 | 47 | 53 | 26 | 23 | 25 | 24 | 27 |
Height (cm) | 171 | 182 | 165 | 188 | 167 | 160 | 168 | 170 |
Weight (kg) | 75 | 82 | 60 | 120 | 45 | 60 | 52 | 55 |
Distance (m) | Target 1 | Target 2 | Target 3 | Target 4 | Target 5 | Target 6 | Target 7 | Target 8 | Average |
---|---|---|---|---|---|---|---|---|---|
0.5 | 94.72% | 97.09% | 93.33% | 94.51% | 95.06% | 94.83% | 93.79% | 93.34% | 94.58% |
1.0 | 95.24% | 94.63% | 96.27% | 94.43% | 93.97% | 94.12% | 93.10% | 93.74% | 94.44% |
Algorithm/ Distance (m) | Target 1 | Target 2 | Target 3 | Target 4 | Target 5 | Target 6 | Target 7 | Target 8 | Average |
---|---|---|---|---|---|---|---|---|---|
SVDF/0.5 | 97.60% | 95.99% | 97.01% | 97.82% | 95.97% | 96.43% | 96.41% | 95.05% | 96.54% |
SVF/0.5 | 95.78% | 95.67% | 95.51% | 95.75% | 95.02% | 92.82% | 94.89% | 94.04% | 94.94% |
SSAVMD/0.5 | 93.82% | 89.23% | 92.01% | 88.51% | 90.04% | 86.98% | 86.48% | 93.96% | 90.13% |
SVDF/1.0 | 97.52% | 96.95% | 95.54% | 95.89% | 95.84% | 93.04% | 96.31% | 95.01% | 95.76% |
SVF/1.0 | 94.95% | 92.78% | 90.12% | 95.17% | 95.59% | 90.17% | 93.58% | 94.48% | 93.36% |
SSAVMD/1.0 | 91.00% | 87.43% | 81.56% | 88.72% | 89.97% | 89.52% | 91.14% | 89.75% | 88.64% |
Distance (m) | Target 1 | Target 2 | Target 3 | Target 4 | Target 5 | Target 6 | Target 7 | Target 8 | Average |
---|---|---|---|---|---|---|---|---|---|
0.5 | 93.21% | 91.41% | 91.43% | 96.10% | 93.16% | 92.55% | 92.62% | 92.80% | 92.91% |
1.0 | 93.24% | 90.28% | 93.69% | 94.36% | 93.76% | 92.29% | 93.10% | 91.44% | 92.77% |
Algorithm/ Distance (m) | Target 1 | Target 2 | Target 3 | Target 4 | Target 5 | Target 6 | Target 7 | Target 8 | Average |
---|---|---|---|---|---|---|---|---|---|
SVDF/0.5 | 96.89% | 97.39% | 95.72% | 94.31% | 95.61% | 95.93% | 93.85% | 94.85% | 95.57% |
SVF/0.5 | 94.45% | 91.32% | 94.94% | 94.29% | 94.95% | 93.25% | 91.60% | 93.04% | 93.48% |
SSAVMD/0.5 | 89.45% | 83.11% | 89.60% | 89.66% | 89.51% | 90.90% | 89.88% | 91.75% | 89.23% |
SVDF/1.0 | 96.62% | 96.83% | 95.93% | 94.86% | 94.75% | 92.66% | 95.33% | 96.09% | 95.38% |
SVF/1.0 | 95.30% | 92.59% | 94.83% | 93.88% | 91.62% | 92.28% | 91.44% | 95.15% | 93.39% |
SSAVMD/1.0 | 91.20% | 90.99% | 92.12% | 87.07% | 89.71% | 87.80% | 90.56% | 90.79% | 90.03% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Zhang, W.; Xu, Z.; Wang, Y.; Deng, Z.; You, C.; Tang, C. SSA-VMD-Double-Fuzzy-Logic for Human Vital Signs Detection Using a UWB Radar. Electronics 2025, 14, 1683. https://doi.org/10.3390/electronics14081683
Li J, Zhang W, Xu Z, Wang Y, Deng Z, You C, Tang C. SSA-VMD-Double-Fuzzy-Logic for Human Vital Signs Detection Using a UWB Radar. Electronics. 2025; 14(8):1683. https://doi.org/10.3390/electronics14081683
Chicago/Turabian StyleLi, Ji, Weixin Zhang, Zeping Xu, Yunpeng Wang, Zhaotian Deng, Chengwu You, and Chengpei Tang. 2025. "SSA-VMD-Double-Fuzzy-Logic for Human Vital Signs Detection Using a UWB Radar" Electronics 14, no. 8: 1683. https://doi.org/10.3390/electronics14081683
APA StyleLi, J., Zhang, W., Xu, Z., Wang, Y., Deng, Z., You, C., & Tang, C. (2025). SSA-VMD-Double-Fuzzy-Logic for Human Vital Signs Detection Using a UWB Radar. Electronics, 14(8), 1683. https://doi.org/10.3390/electronics14081683