Design and Performance Verification of A-HFM Signals for Simultaneous Frame Detection, Cell ID Assignment, and Doppler Estimation in AUVs Using Multiple Surface Buoys
Abstract
:1. Introduction
2. Preliminaries
2.1. Underwater Acoustic Channel
2.2. Methodology for Underwater Cellular Network Configuration
2.3. Underwater Communication Preamble
3. Superimposed Hyperbolic Frequency Modulation
3.1. Proposed A-HFM
3.2. Proposed Adjusted-HFM Based on the Superimposed HFM Method
4. Ocean Experiments
4.1. Ocean Experiment Design
4.2. Result of Ocean Experiment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sahoo, A.; Dwivedy, S.K.; Robi, P.S. Advancements in the field of autonomous underwater vehicle. Ocean. Eng. 2019, 181, 145–160. [Google Scholar]
- Liu, C.; Lv, Z.; Xiao, L.; Su, W.; Ye, L.; Yang, H.; You, X.; Han, S. Efficient Beacon-Aided AUV Localization: A Reinforcement Learning Based Approach. IEEE Trans. Veh. Technol. 2024, 73, 7799–7811. [Google Scholar] [CrossRef]
- Zhu, S.; Han, G.; Lin, C.; Tao, Q. Underwater Target Tracking Based on Hierarchical Software-Defined Multi-AUV Rein-forcement Learning: A Multi-AUV Advantage-Attention Actor-Critic Approach. IEEE Trans. Mob. Comput. 2024, 23, 13639–13653. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, Y.; Li, B.; Wang, X.; Yang, L. Experimental Analysis of Deep-Sea AUV Based on Multi-Sensor Integrated Navigation and Positioning. Remote. Sens. 2024, 16, 199. [Google Scholar] [CrossRef]
- Qiu, T.; Li, Y.; Feng, X. Distributed Channel Sensing MAC Protocol for Multi-UUV Underwater Acoustic Network. IEEE Internet Things J. 2024, 11, 16119–16133. [Google Scholar] [CrossRef]
- Yun, C. Underwater Multi-Channel MAC with Cognitive Acoustics for Distributed Underwater Acoustic Networks. Sensors 2024, 24, 3027. [Google Scholar] [CrossRef]
- Qiao, G.; Babar, Z.; Ma, L.; Liu, S.; Wu, J. MIMO-OFDM underwater acoustic communication systems—A review. Phys. Commun. 2017, 23, 56–64. [Google Scholar] [CrossRef]
- Zhu, J.; Pan, X.; Peng, Z.; Liu, M.; Guo, J.; Zhang, T.; Gou, Y.; Cui, J.-H. A uw-Cellular Network: Design, Implementation and Experiments. J. Mar. Sci. Eng. 2023, 11, 827. [Google Scholar] [CrossRef]
- Stojanovic, M.; Preisig, J. Underwater acoustic communication channels: Propagation models and statistical characterization. IEEE Commun. Mag. 2009, 47, 84–89. [Google Scholar] [CrossRef]
- Lee, K.; Kim, J.; Jung, J.; Lee, I. Zadoff-Chu Sequence Based Signature Identification for OFDM. IEEE Trans. Wirel. Commun. 2013, 12, 4932–4942. [Google Scholar] [CrossRef]
- Hyder, M.; Mahata, K. Zadoff–Chu Sequence Design for Random Access Initial Uplink Synchronization in LTE-Like Systems. IEEE Trans. Wirel. Commun. 2017, 16, 503–511. [Google Scholar] [CrossRef]
- Wang, K.; Chen, S.; Liu, C.; Liu, Y.; Xu, Y. Doppler estimation and timing synchronization of underwater acoustic communication based on hyperbolic frequency modulation signal. In Proceedings of the 2015 IEEE 12th International Conference on Networking, Sensing and Control, Taipei, Taiwan, 9–11 April 2015; pp. 75–80. [Google Scholar] [CrossRef]
- Kim, Y.J.; Choi, S.J.; Cho, Y.S. Random Access Preamble Design Technique for Non-Terrestrial Networks with High Doppler Shift. Korean Inst. Commun. Inf. Sci. Conf. 2023, 2023, 716–717. [Google Scholar] [CrossRef]
- Kim, Y.J.; Asim, M.; Im, T.H.; Cho, Y.S. Sequence Design Technique for Accurate Timing and Cell ID Estimation in Underwater Acoustic Cellular Systems with a High Doppler. Electronics 2021, 10, 2413. [Google Scholar] [CrossRef]
- Asim, M.; Khan, M.S.; Im, T.H.; Cho, Y.S. Cell ID and Timing Estimation Techniques for Underwater Acoustic Cellular Systems in High-Doppler Environments. Sensors 2020, 20, 4147. [Google Scholar] [CrossRef]
- Wei, R.; Ma, X.; Zhao, S.; Yan, S. Doppler Estimation Based on Dual-HFM Signal and Speed Spectrum Scanning. IEEE Signal Process. Lett. 2020, 27, 1740–1744. [Google Scholar] [CrossRef]
- Zhao, S.; Yan, S.; Xu, L. Doppler Estimation Based on HFM Signal for Underwater Acoustic Time-varying Multipath Channel. In Proceedings of the 2019 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Dalian, China, 20–22 September 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Lv, C.; Sun, Q.; Chen, H.; Xie, L. Doppler and Channel Estimation Using Superimposed Linear Frequency Modulation Preamble Signal for Underwater Acoustic Communication. J. Mar. Sci. Eng. 2024, 12, 338. [Google Scholar] [CrossRef]
- Kim, M.-S.; Im, T.-H.; Cho, Y.-H.; Kim, K.-W.; Ko, H.-L. HFM design for timing synchronization in underwater communications systems. In Proceedings of the OCEANS 2017—Aberdeen, Aberdeen, UK, 19–22 June 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Ling, Z.; Xie, L.; Chen, H. Joint Doppler Scale Estimation and Timing Synchronization in Underwater Acoustic Communications. In Proceedings of the 2019 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Dalian, China, 20–22 September 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Zuberi, H.H.; Liu, S.; Sohail, M.Z.; Pan, C. Multi-user underwater acoustic communication using binary phase-coded hyperbolic frequency-modulated signals. IET Commun. 2022, 16, 1415–1427. [Google Scholar] [CrossRef]
- Qu, Z.; Lai, M. A Review on Electromagnetic, Acoustic, and New Emerging Technologies for Submarine Communication. IEEE Access 2024, 12, 12110–12125. [Google Scholar] [CrossRef]
- Kilfoyle, D.; Baggeroer, A. The state of the art in underwater acoustic telemetry. IEEE J. Ocean. Eng. 2000, 25, 4–27. [Google Scholar] [CrossRef]
- Sozer, E.; Stojanovic, M.; Proakis, J. Underwater acoustic networks. IEEE J. Ocean. Eng. 2000, 25, 72–83. [Google Scholar] [CrossRef]
- Ko, H.; Lee, H.; Cha, M.; Kim, S.; Kim, S.; Im, T. Base Station-based Underwater Communication Network. In Proceedings of the OCEANS 2023—Limerick, Limerick, Ireland, 5–8 June 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Yoon, S.; Azad, A.K.; Oh, H.; Kim, S. AURP: An AUV-Aided Underwater Routing Protocol for Underwater Acoustic Sensor Networks. Sensors 2012, 12, 1827–1845. [Google Scholar] [CrossRef] [PubMed]
- Stefanov, A.; Stojanovic, M. Design and Performance Analysis of Underwater Acoustic Networks. IEEE J. Sel. Areas Commun. 2011, 29, 2012–2021. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Cai, L.; Shen, X.; Zhao, R. Fundamentals and Advancements of Topology Discovery in Underwater Acoustic Sensor Networks: A Review. IEEE Sens. J. 2021, 21, 21159–21174. [Google Scholar] [CrossRef]
- Li, W.; Zhou, S.; Willett, P.; Zhang, Q. Preamble Detection for Underwater Acoustic Communications Based on Sparse Channel Identification. IEEE J. Ocean. Eng. 2019, 44, 256–268. [Google Scholar] [CrossRef]
- Arab, H.; Dufour, S.; Moldovan, E.; Akyel, C.; Tatu, S.O. Accurate and Robust CW-LFM Radar Sensor: Transceiver Front-End Design and Implementation. IEEE Sens. J. 2019, 19, 1943–1950. [Google Scholar] [CrossRef]
- Huang, S.; Fang, S.; Han, N. An Improved Velocity Estimation Method for Wideband Multi-Highlight Target Echoes in Active Sonar Systems. Sensors 2018, 18, 2794. [Google Scholar] [CrossRef]
- Lee, D.-H.; Shin, J.-W.; Do, D.-W.; Choi, S.-M.; Kim, H.-N. Robust LFM Target Detection in Wideband Sonar Systems. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 2399–2412. [Google Scholar] [CrossRef]
- Knight, W.; Pridham, R.; Kay, S. Digital signal processing for sonar. Proc. IEEE 1981, 69, 1451–1506. [Google Scholar] [CrossRef]
- Sun, Q.; Wu, F.-Y.; Yang, K.; Ma, Y. Estimation of multipath delay-Doppler parameters from moving LFM signals in shallow water. Ocean Eng. 2021, 232, 109125. [Google Scholar] [CrossRef]
- Cui, X.; Yan, P.; Li, J.; Zhang, H.; Li, S.; Liu, J. Timing estimation of multiple hyperbolic frequency-modulated signals based on multicarrier underwater acoustic communication. Trans. Emerg. Telecommun. Technol. 2022, 33, e4636. [Google Scholar] [CrossRef]
- Zhou, W.; Yeh, C.-M.; Jin, K.; Yang, J.; Lu, Y.-B. ISAR Imaging Based on the Wideband Hyperbolic Frequency-ModulationWaveform. Sensors 2015, 15, 23188–23204. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Dong, X. Comparison of Frequency Offset and Timing Offset Effects on the Performance of SC-FDE and OFDM Over UWB Channels. IEEE Trans. Veh. Technol. 2009, 58, 242–250. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Sampling Frequency | 200 kHz |
Center Frequency | 15, 20, 25 kHz |
Bandwidth | 4 kHz |
Signal Duration | 125 ms |
Guard Interval | 500 ms |
m/s | km/h | Doppler Factor | Doppler Shift (15 kHz) | Doppler Shift (20 kHz) | Doppler Shift (25 kHz) |
---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 |
0.51 | 1.85 | 0.000342 | 5.13 | 6.84 | 8.55 |
1.02 | 3.70 | 0.000685 | 10.27 | 1370 | 17.12 |
1.54 | 5.55 | 0.001028 | 15.42 | 20.56 | 25.70 |
2.05 | 7.40 | 0.001371 | 20.56 | 27.42 | 34.27 |
2.57 | 9.23 | 0.001714 | 25.71 | 34.28 | 42.85 |
3.08 | 11.11 | 0.002057 | 30.85 | 41.14 | 51.42 |
3.60 | 12.96 | 0.002407 | 36.10 | 48.14 | 60.17 |
Center Frequency | CID Assignment (%) | RMSE of Doppler Estimation (Hz) |
---|---|---|
15 kHz | 93 | 2.54 |
20 kHz | 75 | 7.5 |
25 kHz | 100 | 2.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.-Y.; Chung, T.-G.; Im, T.-H. Design and Performance Verification of A-HFM Signals for Simultaneous Frame Detection, Cell ID Assignment, and Doppler Estimation in AUVs Using Multiple Surface Buoys. Electronics 2025, 14, 938. https://doi.org/10.3390/electronics14050938
Park S-Y, Chung T-G, Im T-H. Design and Performance Verification of A-HFM Signals for Simultaneous Frame Detection, Cell ID Assignment, and Doppler Estimation in AUVs Using Multiple Surface Buoys. Electronics. 2025; 14(5):938. https://doi.org/10.3390/electronics14050938
Chicago/Turabian StylePark, Sae-Yong, Tae-Geon Chung, and Tae-Ho Im. 2025. "Design and Performance Verification of A-HFM Signals for Simultaneous Frame Detection, Cell ID Assignment, and Doppler Estimation in AUVs Using Multiple Surface Buoys" Electronics 14, no. 5: 938. https://doi.org/10.3390/electronics14050938
APA StylePark, S.-Y., Chung, T.-G., & Im, T.-H. (2025). Design and Performance Verification of A-HFM Signals for Simultaneous Frame Detection, Cell ID Assignment, and Doppler Estimation in AUVs Using Multiple Surface Buoys. Electronics, 14(5), 938. https://doi.org/10.3390/electronics14050938