Self-Calibration Method for Accurate Direct-Current Ratio Calibration
Abstract
:1. Introduction
2. DC Current Ratio Device
3. Calibration Principle
3.1. Calibration of 10:1 (10 A:1 A) Current Ratio
3.2. Calibration of 100:1 (100 A:1 A) Current Ratio
3.3. Calibration of 1000:1 (1000 A:1 A) Current Ratio
4. Calibration Device and Results
4.1. Self-Calibration Device
4.2. Calibration Result
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rudervall, R.; Charpentier, J.P.; Sharma, R. High voltage direct current (HVDC) transmission systems technology review paper. In Proceedings of the Energy Week 2000, Washington, DC, USA, 7–8 March 2000; pp. 1–19. [Google Scholar]
- Bastos, M.C.; Fernqvist, G.; Hudson, G.; Pett, J.; Cantone, A.; Power, F.; Saab, A.; Halvarsson, B.; Pickering, J. High accuracy current measurement in the main power converters of the large hadron collider: Tutorial 53. IEEE Instrum. Meas. Mag. 2014, 17, 66–73. [Google Scholar] [CrossRef]
- Hudson, G.; Bouwknegt, K. 4–13 kA DC current transducers enabling accurate in-situ calibration for a new particle accelerator project, LHC. In Proceedings of the 2005 European Conference on Power Electronics and Applications, Dresden, Germany, 11–14 September 2005; pp. 1–8, 4–13. [Google Scholar]
- Rubioa, E. High-stability current in the 10 A range. IEEE Trans. Instrum. Meas. 1996, 45, 865–871. [Google Scholar] [CrossRef]
- Ripka, P. Electric current sensors: A review. Meas. Sci. Technol. 2010, 21, 112001. [Google Scholar] [CrossRef]
- Filanovsky, I.M.; Piskarev, V.A. Sensing; Measurement of dc current using a trans-former and RL-multivibrator. IEEE Trans. Circuits Syst. 1991, 38, 1366–1370. [Google Scholar]
- Zhao, J.; Lu, Y.; Zhai, C.; He, Q.; Huang, X.; Wang, Y. Method for the absolute calibration of direct-current current transducers. IEEE Trans. Instrum. Meas. 2019, 68, 1961–1966. [Google Scholar] [CrossRef]
- Unser, K. Beam current transformer with DC to 200 MHz range. IEEE Trans. Nucl. Sci. 1969, 16, 934–938. [Google Scholar] [CrossRef]
- Unser, K. A toroidal DC beam current transformer with high resolution. IEEE Trans. Nucl. Sci. 1981, 28, 2344–2346. [Google Scholar] [CrossRef]
- Callegaro, L.; Cassiago, C.; Gasparotto, E. On the calibration of direct-current cur-rent transformers (DCCT). IEEE Trans. Instrum. Meas. 2015, 64, 723–727. [Google Scholar] [CrossRef]
- Rietveld, G.; van der Beek, J.H.N.; Houtzager, E. Accurate high-current DC current ratio measurements. IEEE Trans. Instrum. Meas. 2015, 64, 3055–3061. [Google Scholar] [CrossRef]
- Shao, H.; Lin, F.; Liang, B.; Hua, X.; Lu, Y.; Qu, K.; Pan, Y.; Zhang, Z.; Chen, W.; Su, H. DC 5 kA current ratio standards based on series–parallel self-calibration DCCs. IEEE Trans. Instrum. Meas. 2013, 62, 3093–3100. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, X.; Liu, Y.; Zheng, L.; Zou, B. Calibration of DC current up to 600 A. In Proceedings of the CPEM 2010, Daejeon, Republic of Korea, 13–18 June 2010; pp. 603–604. [Google Scholar]
- Zhao, J.; Lu, Y.; He, Q.; Wang, Y. Method for the Absolute Calibration of Direct-Current Current Transducers. In Proceedings of the 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018), Paris, France, 8–13 July 2018; pp. 1–2. [Google Scholar]
- Miljanic, P.N.; Kusters, N.L.; Moore, W.J.M. The development of the current comparator, a high-accuracy A-C ratio measuring device. Trans. Am. Inst. Electr. Eng. Part I Commun. Electron. 1962, 81, 359–368. [Google Scholar] [CrossRef]
- Satrapinski, A.; Götz, M.; Pesel, E.; Fletcher, N.; Gournay, P.; Rolland, B. New Generation of Low-Frequency Current Comparators Operated at Room Temperature. IEEE Trans. Instrum. Meas. 2017, 66, 1417–1424. [Google Scholar] [CrossRef]
- Brown, D.; Wachowicz, A.; Huang, S. AccuBridge™ towards the development of a DC Current Comparator resistance ratio standard. In Proceedings of the CPEM 2010, Daejeon, Republic of Korea; 2010; pp. 639–640. [Google Scholar]
- Brown, D.; Wachowicz, A.; Huang, S. The enhanced performance of the DCC current comparator using AccuBridge® technology. In Proceedings of the 2016 Conference on Precision Electromagnetic Measurements (CPEM 2016), Ottawa, ON, Canada, 10–15 July 2016; pp. 1–2. [Google Scholar]
- Pollarolo, A.; Brown, D.; Huang, S.; Wachowicz, A.; Brown, R. Quantum Hall Resistance Verification Based on a Direct Current Comparator Bridge. In Proceedings of the 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018), Paris, France, 8–13 July 2018; pp. 1–2. [Google Scholar]
Quantity | Type | Uncertainty Contribution |
---|---|---|
Repeatability | A | 0.05 × 10−6 |
Current source I | B | 0.12 × 10−9 |
Current meter ΔI | B | 4.1 × 10−9 |
Standard uncertainty | α11 | 0.05 × 10−6 |
Extended uncertainty (K = 2) | U(α11) | 0.10 × 10−6 |
Quantity | Type | Uncertainty Contribution |
---|---|---|
Repeatability | A | 0.06 × 10−6 |
Current source I | B | 0.12 × 10−9 |
Current meter ΔI | B | 4.1 × 10−9 |
Shunt resistor | B | 1.0 × 10−8 |
Standard uncertainty | β | 0.06 × 10−6 |
Extended uncertainty (K = 2) | U(β) | 0.12 × 10−6 |
Quantity | Type | Uncertainty Contribution |
---|---|---|
Repeatability | A | 0.08 × 10−6 |
Current source I | B | 1.1 × 10−8 |
Current meter ΔI | B | 0.41 × 10−9 |
Shunt resistor | B | 1.0 × 10−8 |
Standard uncertainty | 0.08 × 10−6 | |
Extended uncertainty (K = 2) | 0.16 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, C.; Zhao, J.; Lu, Y.; Hu, P.; Zhou, K. Self-Calibration Method for Accurate Direct-Current Ratio Calibration. Electronics 2025, 14, 1051. https://doi.org/10.3390/electronics14051051
Zhai C, Zhao J, Lu Y, Hu P, Zhou K. Self-Calibration Method for Accurate Direct-Current Ratio Calibration. Electronics. 2025; 14(5):1051. https://doi.org/10.3390/electronics14051051
Chicago/Turabian StyleZhai, Changwei, Jianting Zhao, Yunfeng Lu, Pengcheng Hu, and Kunli Zhou. 2025. "Self-Calibration Method for Accurate Direct-Current Ratio Calibration" Electronics 14, no. 5: 1051. https://doi.org/10.3390/electronics14051051
APA StyleZhai, C., Zhao, J., Lu, Y., Hu, P., & Zhou, K. (2025). Self-Calibration Method for Accurate Direct-Current Ratio Calibration. Electronics, 14(5), 1051. https://doi.org/10.3390/electronics14051051