Image Processing Based on Convolution Neural Network
1. Introduction to Image Processing Based on Convolution Neural Network
2. Overview of This Special Issue
3. Conclusions
Funding
Conflicts of Interest
List of Contributions
- Wang, X.; Song, W.; Hao, C.; Liu, S.; Liu, F. Supervised Face Tampering Detection Based on Spatial Channel Attention Mechanism. Electronics 2025, 14, 500. https://doi.org/10.3390/electronics14030500.
- Sun, Y.; Hu, S.; Xie, K.; Wen, C.; Zhang, W.; He, J. Enhanced Deblurring for Smart Cabinets in Dynamic and Low-Light Scenarios. Electronics 2025, 14, 488. https://doi.org/10.3390/electronics14030488.
- Hu, J.; Wan, W.; Qiao, P.; Zhou, Y.; Ouyang, A. Power Insulator Defect Detection Method Based on Enhanced YOLOV7 for Aerial Inspection. Electronics 2025, 14, 408. https://doi.org/10.3390/electronics14030408.
- Ding, X.; Jiang, X.; Jiang, X. 4DBD-Net: Dual-Branch Decoder Network with a Multiscale Cascaded Residual Module for Ship Segmentation. Electronics 2025, 14, 209. https://doi.org/10.3390/electronics14010209.
- Niu, Z.; Pi, H.; Jing, D.; Liu, D. PII-GCNet: Lightweight Multi-Modal CNN Network for Efficient Crowd Counting and Localization in UAV RGB-T Images. Electronics 2024, 13, 4298. https://doi.org/10.3390/electronics13214298.
- Dai, G.; Chen, K.; Huang, L.; Chen, L.; An, D.; Wang, Z.; Wang, K. Cecl-Net: Contrastive Learning and Edge-Reconstruction-Driven Complementary Learning Network for Image Forgery Localization. Electronics 2024, 13, 3919. https://doi.org/10.3390/electronics13193919.
- Zhuang, Z.; Tomioka, Y.; Shin, J.; Okuyama, Y. PGD-Trap: Proactive Deepfake Defense with Sticky Adversarial Signals and Iterative Latent Variable Refinement. Electronics 2024, 13, 3353. https://doi.org/10.3390/electronics13173353.
- Rathee, M.; Bačić, B.; Doborjeh, M. Hybrid Machine Learning for Automated Road Safety Inspection of Auckland Harbour Bridge. Electronics 2024, 13, 3030. https://doi.org/10.3390/electronics13153030.
- Liu, S.; Zhong, W.; Guo, F.; Cong, J.; Gu, B. Fine-Grained Few-Shot Image Classification Based on Feature Dual Reconstruction. Electronics 2024, 13, 2751. https://doi.org/10.3390/electronics13142751.
- Cai, C.; Nie, J.; Tong, J.; Chen, Z.; Xu, X.; He, Z. An Enhanced Single-Stage Neural Network for Object Detection in Transmission Line Inspection. Electronics 2024, 13, 2080. https://doi.org/10.3390/electronics13112080.
- Ding, S.; Guo, Z.; Chen, X.; Li, X.; Ma, F. DCGAN-Based Image Data Augmentation in Rawhide Stick Products’ Defect Detection. Electronics 2024, 13, 2047. https://doi.org/10.3390/electronics13112047.
- Han, J.; Zhang, Z.; Du, Y.; Wang, W.; Chen, X. Esfuzzer: An Efficient Way to Fuzz WebAssembly Interpreter. Electronics 2024, 13, 1498. https://doi.org/10.3390/electronics13081498.
- Yu, H.; Yuan, X.; Jiang, R.; Feng, H.; Liu, J.; Li, Z. Feature Reduction Networks: A Convolution Neural Network-Based Approach to Enhance Image Dehazing. Electronics 2023, 12, 4984. https://doi.org/10.3390/electronics12244984.
References
- Shreyamsha Kumar, B.K. Image Fusion Based on Pixel Significance Using Cross Bilateral Filter. Signal Image Video Process. 2015, 9, 1193–1204. [Google Scholar] [CrossRef]
- Rao, Y.; Zhao, W.; Zhu, Z.; Lu, J.; Zhou, J. Global Filter Networks for Image Classification. Adv. Neural Inf. Process. Syst. 2021, 34, 980–993. [Google Scholar]
- Liu, J.; Fan, X.; Jiang, J.; Liu, R.; Luo, Z. Learning a Deep Multi-Scale Feature Ensemble and an Edge-Attention Guidance for Image Fusion. IEEE Trans. Circuits Syst. Video Technol. 2021, 32, 105–119. [Google Scholar] [CrossRef]
- Mochurad, L. Approach for Enhancing the Accuracy of Semantic Segmentation of Chest X-ray Images by Edge Detection and Deep Learning Integration. Front. Artif. Intell. 2025, 8, 1522730. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, X.; Huang, Y.; Xu, S.; Tang, J.; Hu, H. Underwater Image Enhancement via Frequency and Spatial Domains Fusion. Opt. Lasers Eng. 2025, 186, 108826. [Google Scholar] [CrossRef]
- Zhang, Y.; Xing, K.; Bai, R.; Sun, D.; Meng, Z. An Enhanced Convolutional Neural Network for Bearing Fault Diagnosis Based on Time–Frequency Image. Measurement 2020, 157, 107667. [Google Scholar] [CrossRef]
- Liu, X.; Ghazali, K.H.; Han, F.; Mohamed, I.I. Review of CNN in Aerial Image Processing. Imaging Sci. J. 2023, 71, 1–13. [Google Scholar] [CrossRef]
- Kshatri, S.S.; Singh, D. Convolutional Neural Network in Medical Image Analysis: A Review. Arch. Comput. Methods Eng. 2023, 30, 2793–2810. [Google Scholar] [CrossRef]
- Archana, R.; Jeevaraj, P.S.E. Deep Learning Models for Digital Image Processing: A Review. Artif. Intell. Rev. 2024, 57, 11. [Google Scholar] [CrossRef]
- Hussain, W.; Mushtaq, M.F.; Shahroz, M.; Akram, U.; Ghith, E.S.; Tlija, M.; Kim, T.; Ashraf, I. Ensemble Genetic and CNN Model-Based Image Classification by Enhancing Hyperparameter Tuning. Sci. Rep. 2025, 15, 1003. [Google Scholar] [CrossRef]
- Xi, B.; Zhang, Y.; Li, J.; Zheng, T.; Zhao, X.; Xu, H.; Xue, C.; Li, Y.; Chanussot, J. MCTGCL: Mixed CNN-Transformer for Mars Hyperspectral Image Classification with Graph Contrastive Learning. IEEE Trans. Geosci. Remote Sens. 2025, 63, 5503214. [Google Scholar] [CrossRef]
- Xi, B.; Zhang, Y.; Li, J.; Li, Y.; Li, Z.; Chanussot, J. CTF-SSCL: CNN-Transformer for Few-Shot Hyperspectral Image Classification Assisted by Semi-Supervised Contrastive Learning. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5532617. [Google Scholar] [CrossRef]
- Liu, H.; Tseng, Y.; Chang, K.; Wang, P.; Shuai, H.; Cheng, W. A Denoising FPN with Transformer R-CNN for Tiny Object Detection. IEEE Trans. Geosci. Remote Sens. 2024, 62, 4704415. [Google Scholar]
- Sagar, A.S.S.; Chen, Y.; Xie, Y.; Kim, H.S. MSA R-CNN: A Comprehensive Approach to Remote Sensing Object Detection and Scene Understanding. Expert Syst. Appl. 2024, 241, 122788. [Google Scholar]
- Yue, G.; Jiao, G.; Li, C.; Xiang, J. When CNN Meet with ViT: Decision-Level Feature Fusion for Camouflaged Object Detection. Vis. Comput. 2025, 41, 3957–3972. [Google Scholar] [CrossRef]
- Jin, T.; Kang, S.M.; Kim, N.R.; Kim, H.R.; Han, X. Comparative Analysis of CNN-Based Semantic Segmentation for Apple Tree Canopy Size Recognition in Automated Variable-Rate Spraying. Agriculture 2025, 15, 789. [Google Scholar] [CrossRef]
- Elgamily, K.M.; Mohamed, M.A.; Abou-Taleb, A.M.; Ata, M.M. A Novel W13 Deep CNN Structure for Improved Semantic Segmentation of Multiple Objects in Remote Sensing Imagery. Neural Comput. Appl. 2025, 37, 5397–5427. [Google Scholar] [CrossRef]
- Wu, H.; Huang, P.; Zhang, M.; Tang, W.; Yu, X. CMTFNet: CNN and Multiscale Transformer Fusion Network for Remote-Sensing Image Semantic Segmentation. IEEE Trans. Geosci. Remote Sens. 2023, 61, 2004612. [Google Scholar]
- Gao, G.; Xu, Z.; Li, J.; Yang, J.; Zeng, T.; Qi, G.J. CTCNet: A CNN-Transformer Cooperation Network for Face Image Super-Resolution. IEEE Trans. Image Process. 2023, 32, 1978–1991. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Tang, B.; Huang, J.; Li, J. 3D-MRI Super-Resolution Reconstruction Using Multi-Modality Based on Multi-Resolution CNN. Comput. Methods Programs Biomed. 2024, 248, 108110. [Google Scholar]
- Liu, K.; Yin, L.; Liu, T.; Chen, Z.; Yu, W.; Long, X.; Wu, G. A Super-Resolution Algorithm of Ghost Imaging Using CNN with Grouped Orthonormalization Algorithm Constraint. Opt. Laser Technol. 2025, 181, 111847. [Google Scholar] [CrossRef]
- Bai, X.; Wan, Y.; Wang, W. CEPDNet: A Fast CNN-Based Image Denoising Network Using Edge Computing Platform. J. Supercomput. 2025, 81, 100. [Google Scholar] [CrossRef]
- Hou, R.; Li, F. Hyperspectral Image Denoising via Cooperated Self-Supervised CNN Transform and Nonconvex Regularization. Neurocomputing 2025, 616, 128912. [Google Scholar]
- Zhuang, L.; Ng, M.K.; Gao, L.; Wang, Z. Eigen-CNN: Eigenimages Plus Eigennoise Level Maps Guided Network for Hyperspectral Image Denoising. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5512018. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Zhang, M.; Dong, Q.; Zhang, G.; Wang, Z.; Wei, P. SugarcaneGAN: A Novel Dataset Generating Approach for Sugarcane Leaf Diseases Based on Lightweight Hybrid CNN-Transformer Network. Comput. Electron. Agric. 2024, 219, 108762. [Google Scholar] [CrossRef]
- Beyan, E.V.P.; Rossy, A.G.C. A Review of AI Image Generator: Influences, Challenges, and Future Prospects for Architectural Field. J. Artif. Intell. Archit. 2023, 2, 53–65. [Google Scholar]
- Park, S.; Shin, Y.-G. Generative Convolution Layer for Image Generation. Neural Netw. 2022, 152, 370–379. [Google Scholar]
- Salehi, A.W.; Khan, S.; Gupta, G.; Alabduallah, B.I.; Almjally, A.; Alsolai, H.; Siddiqui, T.; Mellit, A. A Study of CNN and Transfer Learning in Medical Imaging: Advantages, Challenges, Future Scope. Sustainability 2023, 15, 5930. [Google Scholar] [CrossRef]
- Yao, W.; Bai, J.; Liao, W.; Chen, Y.; Liu, M.; Xie, Y. From CNN to Transformer: A Review of Medical Image Segmentation Models. J. Imaging Inform. Med. 2024, 37, 1529–1547. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, X.; Sun, H.; Wang, W.; Yao, L. Alternate Encoder and Dual Decoder CNN-Transformer Networks for Medical Image Segmentation. Sci. Rep. 2025, 15, 8883. [Google Scholar] [CrossRef]
- Shi, R.; Yang, S.; Chen, Y.; Wang, R.; Zhang, M.; Lu, J.; Cao, Y. CNN-Transformer for Visual-Tactile Fusion Applied in Road Recognition of Autonomous Vehicles. Pattern Recognit. Lett. 2023, 166, 200–208. [Google Scholar] [CrossRef]
- Turay, T.; Vladimirova, T. Toward Performing Image Classification and Object Detection with Convolutional Neural Networks in Autonomous Driving Systems: A Survey. IEEE Access 2022, 10, 14076–14119. [Google Scholar] [CrossRef]
- Chen, P.; Liu, F.; Zhang, J.; Wang, B. MFEM-CIN: A Lightweight Architecture Combining CNN and Transformer for the Classification of Pre-Cancerous Lesions of the Cervix. IEEE Open J. Eng. Med. Biol. 2024, 5, 216–225. [Google Scholar] [CrossRef]
- Gursesli, M.C.; Lombardi, S.; Duradoni, M.; Bocchi, L.; Guazzini, A.; Lanata, A. Facial Emotion Recognition (FER) through Custom Lightweight CNN Model: Performance Evaluation in Public Datasets. IEEE Access 2024, 12, 45543–45559. [Google Scholar] [CrossRef]
- Begum, M.; Shuvo, M.H.; Nasir, M.K.; Hossain, A.; Hossain, M.J.; Ashraf, I.; Uddin, J.; Samad, M.A. LCNN: Lightweight CNN Architecture for Software Defect Feature Identification Using Explainable AI. IEEE Access 2024, 12, 55744–55756. [Google Scholar] [CrossRef]
- Dhore, V.; Bhat, A.; Nerlekar, V.; Chavhan, K.; Umare, A. Enhancing Explainable AI: A Hybrid Approach Combining GradCAM and LRP for CNN Interpretability. arXiv 2024, arXiv:2405.12175. [Google Scholar] [CrossRef]
- Alizamir, M.; Heddam, S.; Kim, S. A Robust and Explainable Deep Learning Model Based on an LSTM-CNN Framework for Reliable FDOM Prediction in Water Quality Monitoring: Incorporating SHAP Analysis for Enhanced Interpretability. Process Saf. Environ. Prot. 2025, 107594. [Google Scholar] [CrossRef]
- Li, M.; Hao, R.; Shi, S.; Yu, Z.; He, Q.; Zhan, J. A CNN-Transformer Approach for Image-Text Multimodal Classification with Cross-Modal Feature Fusion. In Proceedings of the 2025 8th International Conference on Advanced Algorithms and Control Engineering (ICAACE), Xi’an, China, 21–23 March 2025; pp. 1182–1186. [Google Scholar]
- Yi, L.; Huang, Y.; Zhan, J.; Wang, Y.; Sun, T.; Long, J.; Liu, J.; Chen, B. CNN-ELMNet: Fault Diagnosis of Induction Motor Bearing Based on Cross-Modal Vector Fusion. Meas. Sci. Technol. 2024, 35, 115114. [Google Scholar] [CrossRef]
- Sun, K.; Ding, J.; Li, Q.; Chen, W.; Zhang, H.; Sun, J.; Jiao, Z.; Ni, X. CMAF-Net: A Cross-Modal Attention Fusion-Based Deep Neural Network for Incomplete Multi-Modal Brain Tumor Segmentation. Quant. Imaging Med. Surg. 2024, 14, 4579. [Google Scholar] [CrossRef] [PubMed]
- Azad, R.; Fayjie, A.R.; Kauffmann, C.; Ben Ayed, I.; Pedersoli, M.; Dolz, J. On the Texture Bias for Few-Shot CNN Segmentation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 5–9 January 2021; pp. 2674–2683. [Google Scholar]
- An, D.-J.; Yoo, I.-S.; Jo, J.-M.; Lee, W.-J.; Yu, H.-J.; Park, S. Few-Shot-Learning for Scar Recognition: A CNN-Based Binary Classification Approach. In Proceedings of the 2024 International Technical Conference on Circuits/Systems Computers, and Communications (ITC-CSCC), Jeju, Republic of Korea, 2–5 July 2024; pp. 1–5. [Google Scholar]
- Liu, Y.; Xiao, F.; Zheng, X.; Deng, W.; Ma, H.; Su, X.; Wu, L. Integrating Deformable CNN and Attention Mechanism into Multi-Scale Graph Neural Network for Few-Shot Image Classification. Sci. Rep. 2025, 15, 1306. [Google Scholar] [CrossRef]
- Madhan, K.; Shanmugapriya, N. Object Detection in Unfavourable Weather Conditions Using CNN-Diffusion Neural Networks. Signal Image Video Process. 2025, 19, 516. [Google Scholar] [CrossRef]
- Pei, X.; Huang, Y.; Su, W.; Zhu, F.; Liu, Q. FFTFormer: A Spatial-Frequency Noise Aware CNN-Transformer for Low Light Image Enhancement. Knowl. Based Syst. 2025, 314, 113055. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, S.; Zhang, J. Image Processing Based on Convolution Neural Network. Electronics 2025, 14, 4649. https://doi.org/10.3390/electronics14234649
Niu S, Zhang J. Image Processing Based on Convolution Neural Network. Electronics. 2025; 14(23):4649. https://doi.org/10.3390/electronics14234649
Chicago/Turabian StyleNiu, Shaozhang, and Jiwei Zhang. 2025. "Image Processing Based on Convolution Neural Network" Electronics 14, no. 23: 4649. https://doi.org/10.3390/electronics14234649
APA StyleNiu, S., & Zhang, J. (2025). Image Processing Based on Convolution Neural Network. Electronics, 14(23), 4649. https://doi.org/10.3390/electronics14234649
