Comparison of High-Frequency Circular Array Imaging Algorithms for Intravascular Ultrasound Imaging Simulations
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthetic Aperture Algorithm
2.2. Apodized Synthetic Aperture Algorithm
2.3. Sparse Synthetic Aperture Algorithm
3. Simulation
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Juneja, M.; Ramteke, H.D.; Jolly, I.T.; Khan, R.; Al Saggaf, M.A.Q. Advancements in Intravascular Coronary Imaging: The Role of IVUS, OCT, and Emerging Multimodal Technologies in Optimizing PCI Outcomes. Acta Sci. Cardiovasc. Syst. 2023, 2, 18–25. [Google Scholar]
- Li, B.; Zhang, P.; Cao, Y.; Sun, L.; Feng, J.; Zhang, Y.; Yang, Q.; Li, Y.; Liu, Z. AIVUS: Guidewire artifacts inpainting for intravascular ultrasound imaging with united spatiotemporal aggregation learning. IEEE Trans. Comput. Imaging 2022, 8, 679–692. [Google Scholar] [CrossRef]
- Fort, S.; Freeman, N.A.; Johnston, P.; Cohen, E.A.; Foster, F.S. In vitro and in vivo comparison of three different intravascular ultrasound catheter designs. Catheter. Cardiovasc. Interv. 2001, 52, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.; Williams, J.; Kang, B.J.; Yoon, C.; Cabrera-Munoz, N.; Jeong, J.S.; Lee, S.G.; Shung, K.K.; Kim, H.H. Angled-focused 45 MHz PMN-PT single element transducer for intravascular ultrasound imaging. Sens. Actuators A Phys. 2015, 228, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Kawase, Y.; Suzuki, Y.; Ikeno, F.; Yoneyama, R.; Hoshino, K.; Ly, H.Q.; Lau, G.T.; Hayase, M.; Yeung, A.C.; Hajjar, R.J.; et al. Comparison of nonuniform rotational distortion between mechanical IVUS and OCT using a phantom model. Ultrasound Med. Biol. 2007, 33, 67–73. [Google Scholar] [CrossRef]
- Fei, C.; Yang, Y.; Guo, F.; Lin, P.; Chen, Q.; Zhou, Q.; Sun, L. PMN-PT single crystal ultrasonic transducer with half-concave geometric design for IVUS imaging. IEEE Trans. Biomed. Eng. 2017, 65, 2087–2092. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, Z.; Chan, J.; Yeow, J.T.W. Capacitive micromachined ultrasound transducers for intravascular ultrasound imaging. Microsyst. Nanoeng. 2020, 6, 73. [Google Scholar] [CrossRef]
- Sung, J.H.; Chang, J.H. Mechanically rotating intravascular ultrasound (IVUS) transducer: A review. Sensors 2021, 21, 3907. [Google Scholar] [CrossRef]
- Katouzian, A.; Angelini, E.D.; Carlier, S.G.; Suri, J.S.; Navab, N.; Laine, A.F. A state-of-the-art review on segmentation algorithms in intravascular ultrasound (IVUS) images. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 823–834. [Google Scholar] [CrossRef]
- Peng, C.; Wu, H.; Kim, S.; Dai, X.; Jiang, X. Recent advances in transducers for intravascular ultrasound (IVUS) imaging. Sensors 2021, 21, 3540. [Google Scholar] [CrossRef]
- Vasquez, A.; Mistry, N.; Singh, J. Impact of intravascular ultrasound in clinical practice. Interv. Cardiol. Rev. Res. Resour. 2014, 9, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Zurakhov, G.; Tong, L.; Ramalli, A.; Tortoli, P.; D’HOoge, J.; Friedman, Z.; Adam, D. Multiline transmit beamforming combined with adaptive apodization. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Jiang, X.; Tian, J.; Han, P.; Zhang, C. A PMN-PT micromachined 1–3 composite circular array for IVUS. In Proceedings of the 2015 IEEE International Ultrasonics Symposium (IUS), Taipei, Taiwan, 21–24 October 2015; IEEE: New York, NY, USA, 2015; pp. 1–4. [Google Scholar]
- Li, S.; Tian, J.; Jiang, X. A micromachined Pb (Mg1/3Nb2/3) O3-PbTiO3 single crystal composite circular array for intravascular ultrasound imaging. J. Eng. Sci. Med. Diagn. Ther. 2019, 2, 21001. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, G.; Liu, W.; Du, K.; Lee, W.-N.; Lu, Z. Ultra-High Frequency and Small Aperture Size Circular Array Based on Piezoelectric Polymer for Intravascular Ultrasound Imaging. In Proceedings of the 2025 23rd International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), Orlando, FL, USA, 29 June–3 July 2025; IEEE: New York, NY, USA, 2025; pp. 1617–1620. [Google Scholar]
- Yu, M.; Li, Y.; Ma, T.; Shung, K.K.; Zhou, Q. Intravascular ultrasound imaging with virtual source synthetic aperture focusing and coherence factor weighting. IEEE Trans. Med. Imaging 2017, 36, 2171–2178. [Google Scholar] [CrossRef]
- Lindsey, B.D.; Martin, K.H.; Jiang, X.; Dayton, P.A. Adaptive windowing in contrast-enhanced intravascular ultrasound imaging. Ultrasonics 2016, 70, 123–135. [Google Scholar] [CrossRef]
- Kang, S.; Lee, J.; Chang, J.H. Effectiveness of synthetic aperture focusing and coherence factor weighting for intravascular ultrasound imaging. Ultrasonics 2021, 113, 106364. [Google Scholar] [CrossRef]
- Zhang, X.; Dai, X.; Yang, B. Fast imaging algorithm for the multiple receiver synthetic aperture sonars. IET Radar Sonar Navig. 2018, 12, 1276–1284. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, P.; Sun, H. An omega-k algorithm for multireceiver synthetic aperture sonar. Electron. Lett. 2023, 59, e12859. [Google Scholar] [CrossRef]
- Kang, J.; Go, D.; Song, I.; Yoo, Y. Wide field-of-view ultrafast curved array imaging using diverging waves. IEEE Trans. Biomed. Eng. 2019, 67, 1638–1649. [Google Scholar] [CrossRef]
- Tanter, M.; Fink, M. Ultrafast imaging in biomedical ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2014, 61, 102–119. [Google Scholar] [CrossRef]
- Tekes, C.; Karaman, M.; Degertekin, F.L. Optimizing circular ring arrays for forward-looking IVUS imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011, 58, 2596–2607. [Google Scholar] [CrossRef]
- Li, M.X.; Feng, Z.H. An optimum imaging scheme for IVUS arrays: Eccentric cylinder wave compounding. Ultrason. Imaging 2019, 41, 173–187. [Google Scholar] [CrossRef] [PubMed]
- Tan, Q.Y.; Ma, T.; Wang, C.Z.; Xiao, Y.; Xia, G. Ultrafast imaging method with endoscopic ultrasonic circular array. J. Integr. Technol. 2020, 9, 44–55. [Google Scholar]
- Huang, P.; Yang, P. Synthetic aperture imagery for high-resolution imaging sonar. Front. Mar. Sci. 2022, 9, 1049761. [Google Scholar] [CrossRef]
- Lockwood, G.R.; Talman, J.R.; Brunke, S.S. Real-time 3-D ultrasound imaging using sparse synthetic aperture beamforming. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1998, 45, 980–988. [Google Scholar] [CrossRef]
- Sung, J.H.; Jeong, J.S. Development of high-frequency (>60 MHz) intravascular ultrasound (IVUS) transducer by using asymmetric electrodes for improved beam profile. Sensors 2018, 18, 4414. [Google Scholar] [CrossRef]
- Vayyeti, A.; Thittai, A.K. Optimally-weighted non-linear beamformer for conventional focused beam ultrasound imaging systems. Sci. Rep. 2021, 11, 21622. [Google Scholar] [CrossRef]
- Jiang, X.; Lu, Y.; Tang, H.Y.; Tsai, J.M.; Ng, E.J.; Daneman, M.J.; Boser, B.E.; Horsley, D.A. Monolithic ultrasound fingerprint sensor. Microsyst. Nanoeng. 2017, 3, 17059. [Google Scholar] [CrossRef]
- Rivandi, H.; Costa, T.L. A 2D ultrasound phased-array transmitter ASIC for high-frequency US stimulation and powering. IEEE Trans. Biomed. Circuits Syst. 2023, 17, 701–712. [Google Scholar] [CrossRef]
- Li, X.; Wu, W.; Chung, Y.; Shih, W.Y.; Shih, W.-H.; Zhou, Q.; Shung, K.K. 80-MHz intravascular ultrasound transducer using PMN-PT free-standing film. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011, 58, 2281–2288. [Google Scholar]
- Roa, C.F.; Chérin, E.; Singh, N.; Yin, J.; Boyes, A.; Foster, F.S.; Demore, C.E.M. Development of a Small-Footprint 50 MHz Linear Array: Fabrication and Micro-Ultrasound Imaging Demonstration. Sensors 2024, 24, 1847. [Google Scholar] [CrossRef]
- Wang, H.; Ma, Y.; Yang, H.; Jiang, H.; Ding, Y.; Xie, H. MEMS ultrasound transducers for endoscopic photoacoustic imaging applications. Micromachines 2020, 11, 928. [Google Scholar] [CrossRef]
- Sun, Y.; Wodnicki, R.; Sun, X.; Kang, H.; Liu, B.; Lok, U.-W.; Chen, S.; Zhou, Q. High frequency ultrasound 2D array design and fabrication with 3D printed interposers at 200 μm pitch. Ultrasonics 2025, 154, 107674. [Google Scholar] [CrossRef]
- Pham, A.N.; Ibrahim, T.; Yasutomi, K.; Kawahito, S.; Nagahara, H.; Kagawa, K. Depth Quality Improvement with a 607 MHz Time-Compressive Computational Pseudo-dToF CMOS Image Sensor. Sensors 2023, 23, 9332. [Google Scholar] [CrossRef]
- Vray, D.; Haas, C.; Rastello, T.; Krueger, M.; Brusseau, E.; Schroeder, K.; Gimenez, G.; Ermert, H. Synthetic aperture-based beam compression for intravascular ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2002, 48, 189–201. [Google Scholar] [CrossRef]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Zhang, Z.; Du, K.; Vai, M.I.; Ke, Q. Comparison of High-Frequency Circular Array Imaging Algorithms for Intravascular Ultrasound Imaging Simulations. Electronics 2025, 14, 4623. https://doi.org/10.3390/electronics14234623
Liu W, Zhang Z, Du K, Vai MI, Ke Q. Comparison of High-Frequency Circular Array Imaging Algorithms for Intravascular Ultrasound Imaging Simulations. Electronics. 2025; 14(23):4623. https://doi.org/10.3390/electronics14234623
Chicago/Turabian StyleLiu, Weiting, Zhiqing Zhang, Kanjie Du, Mang I. Vai, and Qingqing Ke. 2025. "Comparison of High-Frequency Circular Array Imaging Algorithms for Intravascular Ultrasound Imaging Simulations" Electronics 14, no. 23: 4623. https://doi.org/10.3390/electronics14234623
APA StyleLiu, W., Zhang, Z., Du, K., Vai, M. I., & Ke, Q. (2025). Comparison of High-Frequency Circular Array Imaging Algorithms for Intravascular Ultrasound Imaging Simulations. Electronics, 14(23), 4623. https://doi.org/10.3390/electronics14234623

