Effects and Compensation of High-Speed Motion in ISAR Imaging
Abstract
1. Introduction
2. Analysis of ISAR Imaging
2.1. Analysis of ISAR Imaging Under Low-Speed Motion
2.2. Analysis of ISAR Imaging Under High-Speed Motion
2.3. Compensation of High-Speed Motion in ISAR Imaging
3. Simulation of ISAR Signals Under High-Speed Motion
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ausherman, D.A.; Kozma, A.; Walker, J.L.; Jones, H.M. Development in radar imaging. IEEE Trans. Aerosp. Electron. Syst. 1984, 20, 363–400. [Google Scholar] [CrossRef]
- Yang, S.; Li, S.; Fan, H.; Liu, Y. High-resolution ISAR imaging of maneuvering targets based on azimuth adaptive partitioning and compensation function estimation. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5222115. [Google Scholar] [CrossRef]
- Li, H.; Li, X.; Xu, Z.; Jin, X.; Gao, J.; Su, F. An end-to-end multidomain interaction deep unrolling network based on block-aware optimization model for ISAR multitarget separation. IEEE Trans. Geosci. Remote Sens. 2025, 63, 5104813. [Google Scholar] [CrossRef]
- Zhang, L.; Qiao, Z.; Xing, M.; Sheng, J.; Guo, R.; Bao, Z. High-resolution ISAR imaging by exploiting sparse apertures. IEEE Trans. Antennas Propag. 2012, 60, 997–1008. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Y.; Li, X.; Bi, G. Joint sparse aperture ISAR autofocusing and scaling via modified Newton method-based variational Bayesian inference. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4857–4869. [Google Scholar] [CrossRef]
- Zhang, Y.; Bai, X.; Liu, S.; Zhou, F. Joint translational motion compensation and high-resolution ISAR imaging based on sparse Bayesian learning. IEEE Trans. Comput. Imag. 2025, 11, 1115–1127. [Google Scholar] [CrossRef]
- Gao, J.; Deng, B.; Qin, Y.; Wang, H.; Li, X. Enhanced radar imaging using a complex-valued convolutional neural network. IEEE Geosci. Remote Sens. Lett. 2019, 16, 35–39. [Google Scholar] [CrossRef]
- Hu, C.; Wang, L.; Li, Z.; Zhu, D. Inverse synthetic aperture radar imaging using a fully convolutional neural network. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1203–1207. [Google Scholar] [CrossRef]
- Wang, Y.; Bai, X.; Zhou, F. Robust joint translational motion compensation and high-resolution ISAR imaging based on TMC-EADMM-Net. IEEE Trans. Aerosp. Electron. Syst. 2025, 61, 1–15. [Google Scholar] [CrossRef]
- Wehner, D.R. High Resolution Radar, 2nd ed.; Artech House: Norwood, MA, USA, 1994. [Google Scholar]
- Prickett, M.J.; Chen, C.C. Principle of inverse synthetic aperture radar (ISAR) imaging. In Proceedings of the EASCON 1980; Electronics and Aerospace Systems Conference, Arlington, VA, USA, 1 October 1980; pp. 340–345. [Google Scholar]
- Pastina, D.; Farina, A.; Gunning, J.; Lombardo, P. Two-dimensional super-resolution spectral analysis applied to SAR images. IEE Proc. Radar Sonar Navig. 1998, 145, 281–290. [Google Scholar] [CrossRef]
- Chen, V.C. Joint time-frequency transform for radar range-Doppler imaging. IEEE Trans. Aerosp. Electron. Syst. 1998, 34, 486–499. [Google Scholar] [CrossRef]
- Chen, C.C.; Andrews, H.C. Target-motion-induced radar imaging. IEEE Trans. Aerosp. Electron. Syst. 1980, 16, 2–14. [Google Scholar] [CrossRef]
- Sauer, T.; Schroth, A. Robust range alignment algorithm via Hough transform in an ISAR imaging system. IEEE Trans. Aerosp. Electron. Syst. 1995, 31, 1173–1177. [Google Scholar] [CrossRef]
- Li, X.; Kozma; Liu, G.; Ni, J. Autofocusing of ISAR images based on entropy minimization. IEEE Trans. Aerosp. Electron. Syst. 1999, 35, 1240–1251. [Google Scholar]
- Wang, J.; Kasilingam, D. Global range alignment for ISAR. IEEE Trans. Aerosp. Electron. Syst. 2003, 39, 351–357. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X. Improved global range alignment for ISAR. IEEE Trans. Aerosp. Electron. Syst. 2007, 43, 12–17. [Google Scholar] [CrossRef]
- Eichel, P.H.; Ghiglia, D.C.; Jakowatz, C.V. Speckle processing method for synthetic aperture radar phase correction. Opt. Lett. 1989, 14, 1–5. [Google Scholar] [CrossRef]
- Wahl, D.E.; Eichel, P.H.; Ghiglia, D.C.; Jakowatz, C.V. Phase gradient autofocus—A robust tool for high resolution SAR phase correction. IEEE Trans. Aerosp. Electron. Syst. 1994, 30, 827–835. [Google Scholar] [CrossRef]
- Barbarossa, S.; Farina, A. A novel procedure for detecting and focusing moving objects with SAR based on the Wigner-Ville distribution. In Proceedings of the IEEE International Radar Conference, Arlington, VA, USA, 7–10 May 1990. [Google Scholar]
- Berizzi, F.; Cosini, G. Autofocusing of inverse synthetic radar images using contrast optimization. IEEE Trans. Aerosp. Electron. Syst. 1996, 32, 1191–1197. [Google Scholar] [CrossRef]
- Bocker, R.P.; Henderson, T.B.; Jones, S.A.; Frieden, B.R. A new inverse synthetic aperture radar algorithm for translational motion compensation. In Stochastic and Neural Methods in Signal Processing, Image Processing, and Computer Vision; SPIE: Bellingham, WA, USA, 1991; Volume 1569, pp. 298–310. [Google Scholar]
- Fienup, J.R. Synthetic-aperture radar autofocus by maximizing sharpness. Opt. Lett. 2000, 25, 221–223. [Google Scholar] [CrossRef]
- Fienup, J.R.; Miller, J.J. Aberration correction by maximizing generalized sharpness metrics. J. Opt. Soc. Am. A 2003, 20, 609–620. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, X.; Zhou, Z. Minimum-entropy phase adjustment for ISAR. IEE Proc. Radar Sonar Navig. 2004, 151, 203–209. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X. Measurement of sharpness and its application in ISAR imaging. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4885–4892. [Google Scholar] [CrossRef]
- Wang, J. Convergence of the fixed-point algorithm in ISAR imaging. Remote Sens. Lett. 2023, 14, 993–1001. [Google Scholar] [CrossRef]
- Zeng, T.; Wang, R.; Li, F. SAR image autofocus utilizing minimum-entropy criterion. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1552–1556. [Google Scholar] [CrossRef]
- Min, C.; Fu, Y.; Jiang, W.; Li, X.; Zhuang, Z. High resolution range profile imaging of high speed moving targets based on fractional Fourier transform. In Proceedings of the MIPPR 2007: Automatic Target Recognition and Image Analysis; and Multispectral Image Acquisition, Wuhan, China, 15–17 November 2007. [Google Scholar]
- Zhang, S.; Sun, S.; Zhang, W.; Zong, Z.; Yeo, T. High-resolution bistatic ISAR image formation for high-speed and complex-motion targets. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3520–3531. [Google Scholar] [CrossRef]
- Tian, B.; Chen, Z.; Xu, S.; Liu, Y. ISAR imaging compensation of high speed targets based on integrated cubic phase function. In Proceedings of the 8th Symposium on Multispectral Image Processing and Pattern Recognition (MIPPR)—Multispectral Image Acquisition, Processing, and Analysis, Wuhan, China, 26–27 November 2013. [Google Scholar]
- Guo, B.; Li, Z.; Xiao, Y.; Shi, L.; Han, N.; Zhu, X. ISAR Speed Compensation Algorithm for High-speed Moving Target Based on Simulate Anneal. In Proceedings of the 2019 IEEE 19th International Conference on Communication Technology (ICCT), Xi’an, China, 16–19 November 2019. [Google Scholar]
- Sheng, J.; Fu, C.; Wang, H.; Liu, Y. High Speed Motion Compensation for Terahertz ISAR Imaging. In Proceedings of the 2017 International Applied Computational Electromagnetics Society Symposium (ACES), Suzhou, China, 1–4 August 2017. [Google Scholar]
- Li, J.; Zhang, Y.; Yin, C.; Xu, C.; Li, P.; He, J. A Novel Joint Motion Compensation Algorithm for ISAR Imaging Based on Entropy Minimization. Sensors 2024, 13, 4332. [Google Scholar] [CrossRef]
- Bamler, R. Doppler frequency estimation and the Cramer-Rao bound. IEEE Trans. Geosci. Remote Sens. 1991, 29, 385–390. [Google Scholar] [CrossRef]






| Velocities of Radar in x, y, and z Axes (km/s) | Range Index under “Stop-and-Go” Assumption | Range Index in Accurate Simulation | Range Index in Accurate Simulation and Compensation | Theoretical Shift in Range |
|---|---|---|---|---|
| 1 | 257 | 257 | 257 | 0.15 |
| 2 | 257 | 257 | 257 | 0.29 |
| 3 | 257 | 257 | 257 | 0.42 |
| 4 | 257 | 256 | 257 | 0.56 |
| 5 | 257 | 256 | 257 | 0.70 |
| 10 | 257 | 255 | 257 | 1.39 |
| 20 | 257 | 254 | 258 | 2.77 |
| 30 | 257 | 253 | 257 | 4.15 |
| 40 | 257 | 251 | 257 | 5.53 |
| 50 | 257 | 250 | 257 | 6.91 |
| Velocities of Radar in x, y, and z Axes (km/s) | Entropy Under “Stop-and-Go” Assumption | Entropy in Accurate Simulation | Entropy in Accurate Simulation and Compensation |
|---|---|---|---|
| 1 | 4.45948 | 4.45560 | 4.44322 |
| 2 | 4.49059 | 4.48668 | 4.48098 |
| 3 | 4.46057 | 4.46476 | 4.46538 |
| 4 | 4.53495 | 4.51149 | 4.50986 |
| 5 | 4.29094 | 4.27925 | 4.28173 |
| 10 | 4.53337 | 4.53248 | 4.52787 |
| 20 | 4.49024 | 4.49119 | 4.48999 |
| 30 | 4.47112 | 4.47651 | 4.47558 |
| 40 | 4.46734 | 4.46972 | 4.46907 |
| 50 | 4.46814 | 4.47396 | 4.47034 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Wang, J. Effects and Compensation of High-Speed Motion in ISAR Imaging. Electronics 2025, 14, 4118. https://doi.org/10.3390/electronics14204118
Wu Z, Wang J. Effects and Compensation of High-Speed Motion in ISAR Imaging. Electronics. 2025; 14(20):4118. https://doi.org/10.3390/electronics14204118
Chicago/Turabian StyleWu, Zhou, and Junfeng Wang. 2025. "Effects and Compensation of High-Speed Motion in ISAR Imaging" Electronics 14, no. 20: 4118. https://doi.org/10.3390/electronics14204118
APA StyleWu, Z., & Wang, J. (2025). Effects and Compensation of High-Speed Motion in ISAR Imaging. Electronics, 14(20), 4118. https://doi.org/10.3390/electronics14204118
