Quantum Enabled Data Authentication Without Classical Control Interaction
Abstract
1. Introduction
- Shannon’s security model: the authentication tag is computed using a classical Wegman–Carter construction, ensuring information-theoretic protection against forgery.
- Wyner’s wiretap model: confidentiality arises from the intrinsic errors occurring in the adversary’s channel, which limit the amount of information that can be extracted.
- Quantum communication: the use of quantum states guarantees that the assumptions underlying Wyner’s model are satisfied, since any eavesdropping attempt unavoidably introduces disturbances that can be detected.
2. Preliminaries
2.1. Notation
2.2. Wiretap Channel Model
2.3. Quantum Physical Layer
2.4. Polar Coding for Wiretap Channel
- almost perfect channels with ;
- almost useless channels with .
- —bits known to Bob;
- —bits unreliable for Bob;
- —bits random for Eve;
- —bits partially decodable by Eve.
2.5. Wegman-Carter MAC
3. Quantum-Assisted Data Authentication Protocol
- and —used to compute the Wegman–Carter authentication tag as described in Section 2.5;
- —used to select the measurement bases between two mutually unbiased bases (e.g., the computational and the dual basis) as described in Section 2.3;
- —used to initialize the polar encoder and decoder for information hiding in the WCM model as described in Section 2.4.
- Alice generates a random nonce of length equal to the authentication tag size.
- She transmits the message m and the resulting tag t to Bob over the classical channel. Bob treats them as unreliable data and .
- The random value is divided into blocks of size . The sequence is extended with an additional block consisting of random bits.
- Alice constructs a chain of codewords as illustrated in Figure 3. The codewords are concatenated into a sequence c of classical bits.
- Each bit of the sequence is mapped into a quantum state as
- Immediately after preparation, the quantum states are sent sequentially to Bob.
- Bob applies the inverse transformation
- Successful decoding requires that the decoder knows in advance the values of the bits in sets and . Decoding proceeds as in Figure 3. The set always contains the private key , unknown to Eve. In the zeroth codeword, the set is filled with zeros. Once Bob decodes the zeroth codeword, he learns the values necessary for decoding the first codeword. The process continues until the entire chain of codewords is decoded.
- From the information sets of all codewords except the zeroth one, Bob reconstructs the value .
- Using , the received message , and tag , Bob verifies correctness by checking
- The message is accepted if the equality holds; otherwise, it is rejected.
4. Analysis
4.1. Security
4.2. Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Brandt’s Probe
Appendix B. Bhattacharyya Parameter
Appendix C. Elements of Quantum Formalism
References
- Wegman, M.N.; Carter, J.L. New hash functions and their use in authentication and set equality. J. Comput. Syst. Sci. 1981, 22, 265–279. [Google Scholar] [CrossRef]
- Li, B.H. One-time universal hashing quantum digital signatures without perfect keys. Phys. Rev. Appl. 2023, 20, 044011. [Google Scholar] [CrossRef]
- Barnum, H.; Crepeau, C.; Gottesman, D.; Smith, A.; Tapp, A. Authentication of quantum messages. In Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, Vancouver, BC, Canada, 19 November 2002; Proceedings. pp. 449–458, ISSN 0272-5428. [Google Scholar] [CrossRef]
- Broadbent, A.; Gutoski, G.; Stebila, D. Quantum One-Time Programs. In Proceedings of the Advances in Cryptology—CRYPTO, Santa Barbara, CA, USA, 18–22 August 2013; Canetti, R., Garay, J.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 344–360. [Google Scholar] [CrossRef]
- Garg, S.; Yuen, H.; Zhandry, M. New Security Notions and Feasibility Results for Authentication of Quantum Data. In Proceedings of the Advances in Cryptology—CRYPTO, Santa Barbara, CA, USA, 20–24 August 2017; Katz, J., Shacham, H., Eds.; Springer: Cham, Switzerland, 2017; pp. 342–371. [Google Scholar] [CrossRef]
- Alagic, G.; Majenz, C. Quantum Non-malleability and Authentication. In Proceedings of the Advances in Cryptology—CRYPTO, Santa Barbara, CA, USA, 20–24 August 2017; Katz, J., Shacham, H., Eds.; Springer: Cham, Switzerland, 2017; pp. 310–341. [Google Scholar] [CrossRef]
- Portmann, C. Quantum Authentication with Key Recycling. In Proceedings of the Advances in Cryptology—EUROCRYPT, Paris, France, 30 April–4 May 2017; Coron, J.S., Nielsen, J.B., Eds.; Springer: Cham, Switzerland, 2017; pp. 339–368. [Google Scholar] [CrossRef]
- Dulek, Y.; Speelman, F. Quantum Ciphertext Authentication and Key Recycling with the Trap Code. In Proceedings of the 13th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2018), Sidney, Australia, 16–18 July 2018; Leibniz International Proceedings in Informatics (LIPIcs). Jeffery, S., Ed.; Dagstuhl Publishing Team: Dagstuhl, Germany, 2018; Volume 111, pp. 1:1–1:17, ISSN 1868-8969. [Google Scholar] [CrossRef]
- Bennett, C.H.; Brassard, G.; Breidbart, S. Quantum Cryptography II: How to re-use a one-time pad safely even if P=NP. Nat. Comput. 2014, 13, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Damgård, I.; Pedersen, T.B.; Salvail, L. A Quantum Cipher with Near Optimal Key-Recycling. In Proceedings of the Advances in Cryptology—CRYPTO, Santa Barbara, CA, USA, 14–18 August 2005; Shoup, V., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 494–510. [Google Scholar] [CrossRef]
- Fehr, S.; Salvail, L. Quantum Authentication and Encryption with Key Recycling. In Proceedings of the Advances in Cryptology—EUROCRYPT, Paris, France, 30 April–4 May 2017; Coron, J.S., Nielsen, J.B., Eds.; Springer: Cham, Switzerland, 2017; pp. 311–338. [Google Scholar] [CrossRef]
- Škorić, B.; de Vries, M. Quantum Key Recycling with 8-state encoding (The Quantum One-Time Pad is more interesting than we thought). Int. J. Quantum Inf. 2017, 15, 1750016. [Google Scholar] [CrossRef]
- Leermakers, D.; Škorić, B. Security proof for quantum key recycling with noise. Quantum Inf. Comput. 2019, 19, 913–934. [Google Scholar] [CrossRef]
- Leermakers, D.; Škorić, B. Quantum Alice and silent Bob: Qubit-based quantum key recycling with almost no classical communication. Quantum Inf. Comput. 2021, 21, 1–18. [Google Scholar] [CrossRef]
- Lim, N.H.; Choi, J.W.; Kang, M.S.; Yang, H.J.; Han, S.W. Quantum authentication method based on key-controlled maximally mixed quantum state encryption. EPJ Quantum Technol. 2023, 10, 35. [Google Scholar] [CrossRef]
- Qin, J.Q. Efficient quantum digital signatures over long distances with likely bit strings. Phys. Rev. Appl. 2024, 21, 024012. [Google Scholar] [CrossRef]
- Fang, J.; Pan, J.; Huang, X.; Lin, J.; Jiang, C. Integrated physical-layer secure visible light communication and positioning system based on polar codes. Opt. Express 2023, 31, 41756–41772. [Google Scholar] [CrossRef] [PubMed]
- An, C.; Huang, M.; Lu, X.; Bi, L.; Li, W. Polar code-based secure transmission with higher message rate combining channel entropy and computational entropy. Cybersecurity 2024, 7, 36. [Google Scholar] [CrossRef]
- Bloch, M.; Barros, J. Physical-Layer Security: From Information Theory to Security Engineering; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar] [CrossRef]
- Wyner, A.D. The wire-tap channel. Bell Syst. Tech. J. 1975, 54, 1355–1387. [Google Scholar] [CrossRef]
- Csiszar, I.; Korner, J. Broadcast channels with confidential messages. IEEE Trans. Inf. Theory 1978, 24, 339–348. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, H.H.; Wang, L. Physical Layer Security for Next Generation Wireless Networks: Theories, Technologies, and Challenges. IEEE Commun. Surv. Tutor. 2017, 19, 347–376. [Google Scholar] [CrossRef]
- Arikan, E. Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels. IEEE Trans. Inf. Theory 2009, 55, 3051–3073. [Google Scholar] [CrossRef]
- Mahdavifar, H.; Vardy, A. Achieving the Secrecy Capacity of Wiretap Channels Using Polar Codes. IEEE Trans. Inf. Theory 2011, 57, 6428–6443. [Google Scholar] [CrossRef]
- Gulcu, T.C.; Barg, A. Achieving Secrecy Capacity of the Wiretap Channel and Broadcast Channel with a Confidential Component. IEEE Trans. Inf. Theory 2017, 63, 1311–1324. [Google Scholar] [CrossRef]
- Bhattacharyya, A. On a Measure of Divergence between Two Multinomial Populations. Sankhya Indian J. Stat. 1946, 7, 401–406. [Google Scholar]
- Şaşoğlu, E.; Vardy, A. A new polar coding scheme for strong security on wiretap channels. In Proceedings of the 2013 IEEE International Symposium on Information Theory, Istanbul, Turkey, 7–12 July 2013; pp. 1117–1121, ISSN 2157-8117. [Google Scholar] [CrossRef]
- Tal, I.; Vardy, A. How to Construct Polar Codes. IEEE Trans. Inf. Theory 2013, 59, 6562–6582. [Google Scholar] [CrossRef]
- Brandt, H.E. Unambiguous State Discrimination in Quantum Key Distribution. Quantum Inf. Process. 2005, 4, 387–398. [Google Scholar] [CrossRef]
- Jaeger, G.; Shimony, A. Optimal distinction between two non-orthogonal quantum states. Phys. Lett. A 1995, 197, 83–87. [Google Scholar] [CrossRef]
Classical Bit | ||
---|---|---|
“0” | ||
“1” |
N | p | q | ||||
---|---|---|---|---|---|---|
0.01 | 0.05 | 1021 | 1399 | 1676 | 0 | |
0.01 | 0.1 | 834 | 1399 | 1863 | 0 | |
0.01 | 0.15 | 654 | 1396 | 2043 | 3 | |
0.05 | 0.05 | 119 | 1345 | 2578 | 54 | |
0.05 | 0.1 | 48 | 1308 | 2649 | 91 | |
0.05 | 0.15 | 10 | 1244 | 2687 | 155 | |
0.01 | 0.05 | 2590 | 2498 | 3104 | 0 | |
0.01 | 0.1 | 2224 | 2498 | 3470 | 0 | |
0.01 | 0.15 | 1870 | 2498 | 3824 | 0 | |
0.05 | 0.05 | 704 | 2460 | 4990 | 38 | |
0.05 | 0.1 | 501 | 2440 | 5193 | 58 | |
0.05 | 0.15 | 318 | 2416 | 5376 | 82 | |
0.01 | 0.05 | 6080 | 4508 | 5796 | 0 | |
0.01 | 0.1 | 5343 | 4508 | 6533 | 0 | |
0.01 | 0.15 | 4636 | 4508 | 7240 | 0 | |
0.05 | 0.05 | 2250 | 4481 | 9626 | 27 | |
0.05 | 0.1 | 1814 | 4472 | 10,062 | 36 | |
0.05 | 0.15 | 1404 | 4453 | 10,472 | 55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zawadzki, P.; Dziwoki, G.; Kucharczyk, M.; Machniewski, J.; Sułek, W.; Izydorczyk, J.; Izydorczyk, W.; Kłosowski, P.; Dustor, A.; Filipowski, W.; et al. Quantum Enabled Data Authentication Without Classical Control Interaction. Electronics 2025, 14, 4037. https://doi.org/10.3390/electronics14204037
Zawadzki P, Dziwoki G, Kucharczyk M, Machniewski J, Sułek W, Izydorczyk J, Izydorczyk W, Kłosowski P, Dustor A, Filipowski W, et al. Quantum Enabled Data Authentication Without Classical Control Interaction. Electronics. 2025; 14(20):4037. https://doi.org/10.3390/electronics14204037
Chicago/Turabian StyleZawadzki, Piotr, Grzegorz Dziwoki, Marcin Kucharczyk, Jan Machniewski, Wojciech Sułek, Jacek Izydorczyk, Weronika Izydorczyk, Piotr Kłosowski, Adam Dustor, Wojciech Filipowski, and et al. 2025. "Quantum Enabled Data Authentication Without Classical Control Interaction" Electronics 14, no. 20: 4037. https://doi.org/10.3390/electronics14204037
APA StyleZawadzki, P., Dziwoki, G., Kucharczyk, M., Machniewski, J., Sułek, W., Izydorczyk, J., Izydorczyk, W., Kłosowski, P., Dustor, A., Filipowski, W., Paszek, K., & Zawadzka, A. (2025). Quantum Enabled Data Authentication Without Classical Control Interaction. Electronics, 14(20), 4037. https://doi.org/10.3390/electronics14204037