Review of Drone-Based Technologies for Wind Turbine Blade Inspection
Abstract
:1. Introduction
2. Different Drone Types
3. Drone Path Planning for Inspection
4. Commonly Used Turbine Blade Inspection Sensing Technologies for Drones
4.1. High-Resolution Cameras
4.2. Thermal Imaging
4.3. LiDAR (Light Detection and Ranging)
5. Ultrasonic and Acoustic Emission Techniques in Drone-Based Wind Turbine Blade Inspection
6. Challenges and Limitations
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marsh, G. Meeting the challenge of wind turbine blade repair. Reinf. Plast. 2011, 55, 32–36. [Google Scholar] [CrossRef]
- Carnero, A.; Martín, C.; Díaz, M. Portable motorized telescope system for wind turbine blades damage detection. Eng. Rep. 2023, e12618. [Google Scholar] [CrossRef]
- Zhao, Y.; Cheng, Z.; Sandvik, P.C.; Gao, Z.; Moan, T.; Van Buren, E. Numerical modeling and analysis of the dynamic motion response of an offshore wind turbine blade during installation by a jack-up crane vessel. Ocean Eng. 2018, 165, 353–364. [Google Scholar] [CrossRef]
- Kumar, P.; Saravanan, R.; Bharathiraja, R.; Rathnasabapathy, C.S. Risk management of work at height in higher-capacity wind turbines. J. Namib. Stud. 2023, 35, 3815–3839. [Google Scholar]
- Jin, X.; Gan, Y.; Ju, W.; Yang, X.; Han, H. Research on wind turbine safety analysis: Failure analysis, reliability analysis, and risk assessment. Environ. Prog. Sustain. Energy 2016, 35, 1848–1861. [Google Scholar] [CrossRef]
- Memari, M.; Shakya, P.; Shekaramiz, M.; Seibi, A.C.; Masoum, M.A. Review on the advancements in wind turbine blade inspection: Integrating drone and deep learning technologies for enhanced defect detection. IEEE Access 2024, 12, 33236–33282. [Google Scholar] [CrossRef]
- Kulsinskas, A.; Durdevic, P.; Ortiz-Arroyo, D. Internal wind turbine blade inspections using UAVs: Analysis and design issues. Energies 2021, 14, 294. [Google Scholar] [CrossRef]
- Iyer, A.; Nguyen, L.; Khushu, S. Learning to identify cracks on wind turbine blade surfaces using drone-based inspection images. arXiv 2022, arXiv:2207.11186. [Google Scholar]
- Yang, C.; Liu, X.; Zhou, H.; Ke, Y.; See, J. Towards accurate image stitching for drone-based wind turbine blade inspection. Renew. Energy 2023, 203, 267–279. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Z. Automatic detection of wind turbine blade surface cracks based on UAV-taken images. IEEE Trans. Ind. Electron. 2017, 64, 7293–7303. [Google Scholar] [CrossRef]
- Dhiman, H.S.; Nizami, T.K. Wind turbine blade erosion detection using visual inspection and transfer learning. In Proceedings of the 2024 International Conference on Control, Automation and Diagnosis (ICCAD), Paris, France, 15–17 May 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–6. [Google Scholar]
- Xu, D.; Wen, C.; Liu, J. Wind turbine blade surface inspection based on deep learning and UAV-taken images. J. Renew. Sustain. Energy 2019, 11, 053305. [Google Scholar] [CrossRef]
- Hassanalian, M.; Abdelkefi, A. Classifications, applications, and design challenges of drones: A review. Prog. Aerosp. Sci. 2017, 91, 99–131. [Google Scholar] [CrossRef]
- Dileep, M.R.; Navaneeth, A.V.; Ullagaddi, S.; Danti, A. A study and analysis on various types of agricultural drones and its applications. In Proceedings of the 2020 Fifth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), Bangalore, India, 26–27 November 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 181–185. [Google Scholar]
- Vergouw, B.; Nagel, H.; Bondt, G.; Custers, B. Drone technology: Types, payloads, applications, frequency spectrum issues and future developments. In The Future of Drone Use: Opportunities and Threats from Ethical and Legal Perspectives; T.M.C. Asser Press: The Hague, The Netherlands, 2016; pp. 21–45. [Google Scholar]
- Choi, H.W.; Kim, H.J.; Kim, S.K.; Na, W.S. An overview of drone applications in the construction industry. Drones 2023, 7, 515. [Google Scholar] [CrossRef]
- Zhang, K.; Pakrashi, V.; Murphy, J.; Hao, G. Inspection of floating offshore wind turbines using multi-rotor unmanned aerial vehicles: Literature review and trends. Sensors 2024, 24, 911. [Google Scholar] [CrossRef]
- Schafer, B.E.; Picchi, D.; Engelhardt, T.; Abel, D. Multicopter unmanned aerial vehicle for automated inspection of wind turbines. In Proceedings of the 2016 24th Mediterranean Conference on Control and Automation (MED), Athens, Greece, 21–24 June 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 244–249. [Google Scholar]
- Shafiee, M.; Zhou, Z.; Mei, L.; Dinmohammadi, F.; Karama, J.; Flynn, D. Unmanned aerial drones for inspection of offshore wind turbines: A mission-critical failure analysis. Robotics 2021, 10, 26. [Google Scholar] [CrossRef]
- Stokkeland, M. A Computer Vision Approach for Autonomous Wind Turbine Inspection Using a Multicopter. Master’s Thesis, Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim, Norway, 2014. [Google Scholar]
- Nvss, S.; Esakki, B.; Yang, L.J.; Udayagiri, C.; Vepa, K.S. Design and Development of Unibody Quadcopter Structure Using Optimization and Additive Manufacturing Techniques. Designs 2022, 6, 8. [Google Scholar] [CrossRef]
- Lei, Y.; Ji, Y.; Wang, C.; Bai, Y.; Xu, Z. Full-scale measurement on the aerodynamics of nonplanar rotor pairs in a hexacopter. J. Mech. Robot. 2017, 9, 064502. [Google Scholar] [CrossRef]
- Lei, Y.; Wang, J.; Li, Y. The Aerodynamic Performance of a Novel Overlapping Octocopter Considering Horizontal Wind. Aerospace 2023, 10, 902. [Google Scholar] [CrossRef]
- Garg, P.K. Characterisation of Fixed-Wing Versus Multirotors UAVs/Drones. J. Geomatics 2022, 16, 152–159. [Google Scholar] [CrossRef]
- Vohra, D.; Garg, P.; Ghosh, S. Problems and prospects of flying rotor drones particularly quadcopters. Türk. İnsansız Hava Araçları Derg. 2022, 4, 1–7. [Google Scholar] [CrossRef]
- Panagiotou, P.; Yakinthos, K. Aerodynamic efficiency and performance enhancement of fixed-wing UAVs. Aerosp. Sci. Technol. 2020, 99, 105575. [Google Scholar] [CrossRef]
- Elijah, T.; Jamisola, R.S.; Tjiparuro, Z.; Namoshe, M. A review on control and maneuvering of cooperative fixed-wing drones. Int. J. Dyn. Control 2021, 9, 1332–1349. [Google Scholar] [CrossRef]
- Boon, M.A.; Drijfhout, A.P.; Tesfamichael, S. Comparison of a fixed-wing and multi-rotor UAV for environmental mapping applications: A case study. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2017, 42, 47–54. [Google Scholar] [CrossRef]
- Jo, D.; Kwon, Y. Analysis of VTOL UAV propellant technology. J. Comput. Commun. 2017, 5, 76–82. [Google Scholar] [CrossRef]
- Rehan, M.; Akram, F.; Shahzad, A.; Shams, T.A.; Ali, Q. Vertical take-off and landing hybrid unmanned aerial vehicles: An overview. Aeronaut. J. 2022, 126, 2017–2057. [Google Scholar] [CrossRef]
- Rodriguez, A.A.; Shekaramiz, M.; Masoum, M.A. Computer Vision-Based Path Planning with Indoor Low-Cost Autonomous Drones: An Educational Surrogate Project for Autonomous Wind Farm Navigation. Drones 2024, 8, 154. [Google Scholar] [CrossRef]
- Yang, C.; Zhou, H.; Liu, X.; Ke, Y.; Gao, B.; Grzegorzek, M.; See, J. BladeView: Toward Automatic Wind Turbine Inspection With Unmanned Aerial Vehicle. IEEE Trans. Autom. Sci. Eng. 2024. [Google Scholar] [CrossRef]
- Pinney, B.; Duncan, S.; Shekaramiz, M.; Masoum, M.A. Drone Path Planning and Object Detection via QR Codes; A Surrogate Case Study for Wind Turbine Inspection. In Proceedings of the Intermountain Engineering, Technology and Computing (IETC), Orem, UT, USA, 13–14 May 2022; pp. 1–6. [Google Scholar]
- Zhang, Z.; Shu, Z. Unmanned Aerial Vehicle (UAV)-Assisted Damage Detection of Wind Turbine Blades: A Review. Energies 2024, 17, 3731. [Google Scholar] [CrossRef]
- Li, Z.; Wu, J.; Xiong, J.; Liu, B. Research on automatic path planning of wind turbines inspection based on combined UAV. In Proceedings of the 2024 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Toronto, ON, Canada, 19–21 June 2024; pp. 1–6. [Google Scholar]
- Foster, A.J.; Gianni, M.; Aly, A.; Samani, H.; Sharma, S. Multi-Robot Coverage Path Planning for the Inspection of Offshore Wind Farms: A Review. Drones 2023, 8, 10. [Google Scholar] [CrossRef]
- Su, J.; Ling, F.; Zhou, M.; Chen, X.; Jiang, W. A Path Planning Method for UAV Inspection of Wind Turbines. In Proceedings of the 2023 4th International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), Hangzhou, China, 25–27 August 2023; pp. 250–254. [Google Scholar]
- Chen, L.; Hu, Z.; Zhang, F.; Guo, Z.; Jiang, K.; Pan, C.; Ding, W. Remote wind farm path planning for patrol robot based on the hybrid optimization algorithm. Processes 2022, 10, 2101. [Google Scholar] [CrossRef]
- Huang, B.; Zhao, J.; Liu, J. A survey of simultaneous localization and mapping with an envision in 6G wireless networks. arXiv 2019, arXiv:1909.05214. [Google Scholar]
- Einsiedler, J.; Radusch, I.; Wolter, K. Vehicle indoor positioning: A survey. In Proceedings of the 2017 14th Workshop on Positioning, Navigation and Communications (WPNC), Bremen, Germany, 25–26 October 2017; pp. 1–6. [Google Scholar]
- Shihavuddin, A.S.M.; Chen, X.; Fedorov, V.; Nymark Christensen, A.; Andre Brogaard Riis, N.; Branner, K.; Reinhold Paulsen, R. Wind turbine surface damage detection by deep learning aided drone inspection analysis. Energies 2019, 12, 676. [Google Scholar] [CrossRef]
- Pierce, S.G.; Burnham, K.; McDonald, L.; MacLeod, C.N.; Dobie, G.; Summan, R.; McMahon, D. Quantitative inspection of wind turbine blades using UAV deployed photogrammetry. In Proceedings of the 9th European Workshop on Structural Health Monitoring (EWHM 2018), Manchester, UK, 10–13 July 2018; pp. 1–12. [Google Scholar]
- Tan, X.; Zhang, G. Research on surface defect detection technology of wind turbine blade based on UAV image. Instrumentation 2022, 9, 41–48. [Google Scholar]
- Dutta, S.; Liu, S.; Karigiannis, J.; Tan, Y.T.; Theurer, C.B.; Song, G. Autonomous Wind-Turbine Blade Tracking Using A Dual-Camera System. In Proceedings of the 2023 29th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Queenstown, New Zealand, 21–24 November 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6. [Google Scholar]
- Reddy, A.; Indragandhi, V.; Ravi, L.; Subramaniyaswamy, V. Detection of Cracks and Damage in Wind Turbine Blades Using Artificial Intelligence-Based Image Analytics. Measurement 2019, 147, 106823. [Google Scholar] [CrossRef]
- Khodabux, W.; Brennan, F. Objective analysis of corrosion pits in offshore wind structures using image processing. Energies 2021, 14, 5428. [Google Scholar] [CrossRef]
- Brijder, R.; Hagen, C.H.; Cortés, A.; Irizar, A.; Thibbotuwa, U.C.; Helsen, S.; Ompusunggu, A.P. Review of corrosion monitoring and prognostics in offshore wind turbine structures: Current status and feasible approaches. Front. Energy Res. 2022, 10, 991343. [Google Scholar] [CrossRef]
- Mathiesen, T.; Black, A.; Grønvold, F. Monitoring and inspection options for evaluating corrosion in offshore wind foundations. In Proceedings of the NACE Corrosion, Vancouver, BC, Canada, 6–10 March 2016; NACE: Vancouver, BC, Canada, 2016. [Google Scholar]
- Shittu, A.A.; Mehmanparast, A.; Shafiee, M.; Kolios, A.; Hart, P.; Pilario, K. Structural reliability assessment of offshore wind turbine support structures subjected to pitting corrosion-fatigue: A damage tolerance modelling approach. Wind Energy 2020, 23, 2004–2026. [Google Scholar] [CrossRef]
- Shamir, M.; Braithwaite, J.; Mehmanparast, A. Fatigue life assessment of offshore wind support structures in the presence of corrosion pits. Mar. Struct. 2023, 92, 103505. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, M.; Lu, X.; Wang, Z. Effect of temperature and ultraviolet radiation on corrosion behavior of carbon steel in high humidity tropical marine atmosphere. Mater. Chem. Phys. 2022, 277, 124962. [Google Scholar] [CrossRef]
- Su, S.; Zhu, X.T.; Fan, H.Q. Effect of ultraviolet light on the corrosion behavior of weathering steel in simulated marine atmospheric environment. Anti-Corros. Methods Mater. 2024, 71, 105–113. [Google Scholar] [CrossRef]
- Anastasiia, A.; Huang, Y.; Shen, Z.; Serguei, S. Influence of the UV Radiation on the Corrosion Resistance of the Carbon-Based Coatings for the Marine Industry. In Proceedings of the NACE CORROSION, Nashville, TN, USA, 24–28 March 2019. [Google Scholar]
- Liu, Y.; Hajj, M.; Bao, Y. Review of robot-based damage assessment for offshore wind turbines. Renew. Sustain. Energy Rev. 2022, 158, 112187. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, L.; Zhang, W.; Ai, Y. Non-destructive testing of wind turbine blades using an infrared thermography: A review. In Proceedings of the International Conference on Materials for Renewable Energy and Environment, Chengdu, China, 19–21 August 2013; pp. 407–410. [Google Scholar]
- Xiao, W.; Zuo, H.; Xu, J.; Lu, J.; He, Z. Detection of Delamination Defects in Carbon Fiber Composites Based on Infrared Thermal Imaging. In Proceedings of the 2021 Global Reliability and Prognostics and Health Management (PHM-Nanjing), Nanjing, China, 15–17 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar]
- Ciampa, F.; Mahmoodi, P.; Pinto, F.; Meo, M. Recent advances in active infrared thermography for non-destructive testing of aerospace components. Sensors 2018, 18, 609. [Google Scholar] [CrossRef] [PubMed]
- Galleguillos, C.; Zorrilla, A.; Jimenez, A.; Diaz, L.; Montiano, Á.L.; Barroso, M.; Lasagni, F. Thermographic non-destructive inspection of wind turbine blades using unmanned aerial systems. Plast. Rubber Compos. 2015, 44, 98–103. [Google Scholar] [CrossRef]
- Yu, J.; He, Y.; Zhang, F.; Sun, G.; Hou, Y.; Liu, H.; Wang, H. An infrared image stitching method for wind turbine blade using UAV flight data and U-Net. IEEE Sens. J. 2023, 23, 8727–8736. [Google Scholar] [CrossRef]
- Yu, J.; He, Y.; Liu, H.; Zhang, F.; Li, J.; Sun, G.; Wang, H. An improved U-Net model for infrared image segmentation of wind turbine blade. IEEE Sens. J. 2022, 23, 1318–1327. [Google Scholar] [CrossRef]
- Urtasun, B.; de Uralde, P.L.; Velar, K.; Gorostegui-Colinas, E.; Neelov, J.; Wright, S.; Basiri, M. Pulsed Thermography Digital Motion Stabilization for the Unmanned Vehicle Inspection of Solar Farms and GFRP Wind Blades through UAVs and UGVs. In Proceedings of the Thermosense: Thermal Infrared Applications XLIII, 12 April 2021; SPIE: Bellingham, WA, USA, 2021; Volume 11743, pp. 42–57. [Google Scholar]
- Sanati, H.; Wood, D.; Sun, Q. Condition monitoring of wind turbine blades using active and passive thermography. Appl. Sci. 2018, 8, 2004. [Google Scholar] [CrossRef]
- Avdelidis, N.P.; Gan, T.H. Non-destructive evaluation (NDE) of composites: Infrared (IR) thermography of wind turbine blades. In Non-Destructive Evaluation (NDE) of Polymer Matrix Composites; Woodhead Publishing: Cambridge, UK, 2013; pp. 634–650. [Google Scholar]
- Li, X.; He, Y.; Wang, H.; Sun, G.; Yu, J.; Du, X.; Wang, Y. Thermal inspection of subsurface defects in wind turbine blade segments under the natural solar condition. IEEE Trans. Ind. Electron. 2023, 71, 11488–11497. [Google Scholar] [CrossRef]
- Samareh-Mousavi, S.S.; Chen, X.; McGugan, M.; Semenov, S.; Berring, P.; Branner, K.; Ludwig, N. Monitoring fatigue delamination growth in a wind turbine blade using passive thermography and acoustic emission. Struct. Health Monit. 2024, 23, 14759217231217179. [Google Scholar] [CrossRef]
- Wang, C.; Gu, Y. Research on infrared nondestructive detection of small wind turbine blades. Results Eng. 2022, 15, 100570. [Google Scholar] [CrossRef]
- Schwahlen, D.; Handmann, U. Effects of environmental influences on active thermography to detect the inner structures of wind turbine rotor blades. In Proceedings of the 2018 IEEE Conference on Technologies for Sustainability (SusTech), Long Beach, CA, USA, 11–13 November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 154–158. [Google Scholar]
- Fey, J.; Djahan, C.; Mpouma, T.A.; Neh-Awah, J.; Handmann, U. Active thermographic structural feature inspection of wind-turbine rotor. In Proceedings of the 2017 Far East NDT New Technology & Application Forum (FENDT), Xi’an, China, 22–24 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 138–142. [Google Scholar]
- Jensen, F.; Terlau, M.; Sorg, M.; Fischer, A. Active thermography for the detection of sub-surface defects on a curved and coated GFRP-structure. Appl. Sci. 2021, 11, 9545. [Google Scholar] [CrossRef]
- Lizaranzu, M.; Lario, A.; Chiminelli, A.; Amenabar, I. Non-destructive testing of composite materials by means of active thermography-based tools. Infrared Phys. Technol. 2015, 71, 113–120. [Google Scholar] [CrossRef]
- Memari, M.; Shekaramiz, M.; Masoum, M.A.; Seibi, A.C. Data fusion and ensemble learning for advanced anomaly detection using multi-spectral RGB and thermal imaging of small wind turbine blades. Energies 2024, 17, 673. [Google Scholar] [CrossRef]
- Collier, B.; Memari, M.; Shekaramiz, M.; Masoum, M.A.; Seibi, A. Wind Turbine Blade Fault Detection via Thermal Imaging Using Deep Learning. In Proceedings of the 2024 Intermountain Engineering, Technology and Computing (IETC), Logan, UT, USA, 13–14 May 2024; pp. 23–28. [Google Scholar]
- Sheiati, S.; Chen, X. Deep learning-based fatigue damage segmentation of wind turbine blades under complex dynamic thermal backgrounds. Struct. Health Monit. 2024, 23, 539–554. [Google Scholar] [CrossRef]
- Jaeger, B.E.; Schmid, S.; Grosse, C.U.; Gögelein, A.; Elischberger, F. Infrared thermal imaging-based turbine blade crack classification using deep learning. J. Nondestruct. Eval. 2022, 41, 74. [Google Scholar] [CrossRef]
- Nasrollahi, M.; Bolourian, N.; Zhu, Z.; Hammad, A. Designing LiDAR-equipped UAV platform for structural inspection. In Proceedings of the International Symposium on Automation and Robotics in Construction (ISARC), Berlin, Germany, 20–25 July 2018; IAARC Publications: Berlin, Germany, 2018; Volume 35, pp. 1–8. [Google Scholar]
- Bolourian, N.; Hammad, A. LiDAR-equipped UAV path planning considering potential locations of defects for bridge inspection. Autom. Constr. 2020, 117, 103250. [Google Scholar] [CrossRef]
- Kaartinen, E.; Dunphy, K.; Sadhu, A. LiDAR-based structural health monitoring: Applications in civil infrastructure systems. Sensors 2022, 22, 4610. [Google Scholar] [CrossRef] [PubMed]
- Ghaedi, K.; Gordan, M.; Ismail, Z.; Hashim, H.; Talebkhah, M. A literature review on the development of remote sensing in damage detection of civil structures. J. Eng. Res. Rep. 2021, 20, 39–56. [Google Scholar] [CrossRef]
- Oliveira, A.; Dias, A.; Santos, T.; Rodrigues, P.; Martins, A.; Almeida, J. LiDAR-based unmanned aerial vehicle offshore wind blade inspection and modeling. Drones 2024, 8, 617. [Google Scholar] [CrossRef]
- Car, M.; Markovic, L.; Ivanovic, A.; Orsag, M.; Bogdan, S. Autonomous wind-turbine blade inspection using LiDAR-equipped unmanned aerial vehicle. IEEE Access 2020, 8, 131380–131387. [Google Scholar] [CrossRef]
- Durdevic, P.; Ortiz-Arroyo, D.; Yang, Z. LiDAR Assisted Camera Inspection of Wind Turbines: Experimental Study. In Proceedings of the 2019 1st International Conference on Electrical, Control and Instrumentation Engineering (ICECIE), Kuala Lumpur, Malaysia, 25 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–7. [Google Scholar]
- Castelar Wembers, C.; Pflughaupt, J.; Moshagen, L.; Kurenkov, M.; Lewejohann, T.; Schildbach, G. LiDAR-based automated UAV inspection of wind turbine rotor blades. J. Field Robot. 2024, 41, 1116–1132. [Google Scholar] [CrossRef]
- Nikolov, I.A.; Madsen, C.B. LiDAR-based 2D Localization and Mapping System using Elliptical Distance Correction Models for UAV Wind Turbine Blade Inspection. In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2017), Porto, Portugal, 27 February–1 March 2017. [Google Scholar]
- Law, H.; Koutsos, V. Leading edge erosion of wind turbines: Effect of solid airborne particles and rain on operational wind farms. Wind Energy 2020, 23, 1955–1965. [Google Scholar] [CrossRef]
- Aird, J.A.; Barthelmie, R.J.; Pryor, S.C. Automated quantification of wind turbine blade leading edge erosion from field images. Energies 2023, 16, 2820. [Google Scholar] [CrossRef]
- Katsaprakakis, D.A.; Papadakis, N.; Ntintakis, I. A comprehensive analysis of wind turbine blade damage. Energies 2021, 14, 5974. [Google Scholar] [CrossRef]
- Mishnaevsky Jr, L.; Hasager, C.B.; Bak, C.; Tilg, A.M.; Bech, J.I.; Rad, S.D.; Fæster, S. Leading edge erosion of wind turbine blades: Understanding, prevention, and protection. Renew. Energy 2021, 169, 953–967. [Google Scholar] [CrossRef]
- Mattar, R.A.; Kalai, R. Development of a wall-sticking drone for non-destructive ultrasonic and corrosion testing. Drones 2018, 2, 8. [Google Scholar] [CrossRef]
- Zhu, X.; Guo, Z.; Zhou, Q.; Zhu, C.; Liu, T.; Wang, B. Damage identification of wind turbine blades based on deep learning and ultrasonic testing. Nondestruct. Test. Eval. 2024. [Google Scholar] [CrossRef]
- Zhang, D.; Watson, R.; Cao, J.; Zhao, T.; Dobie, G.; MacLeod, C.; Pierce, G. Dry-coupled airborne ultrasonic inspection using coded excitation. In Proceedings of the 2020 IEEE International Ultrasonics Symposium (IUS), Las Vegas, NV, USA, 7–11 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–4. [Google Scholar]
- Watson, R.; Kamel, M.; Zhang, D.; Dobie, G.; MacLeod, C.; Pierce, S.G.; Nieto, J. Dry coupled ultrasonic non-destructive evaluation using an over-actuated unmanned aerial vehicle. IEEE Trans. Autom. Sci. Eng. 2021, 19, 2874–2889. [Google Scholar] [CrossRef]
- Solimine, J.; Niezrecki, C.; Inalpolat, M. An experimental investigation into passive acoustic damage detection for structural health monitoring of wind turbine blades. Struct. Health Monit. 2020, 19, 1711–1725. [Google Scholar] [CrossRef]
- Purarjomandlangrudi, A.; Nourbakhsh, G. Acoustic emission condition monitoring: An application for wind turbine fault detection. Int. J. Res. Eng. Technol. 2013, 2, 907–918. [Google Scholar]
- Sánchez, P.J.B.; Ramirez, I.S.; Márquez, F.P.G. Wind turbines acoustic inspections performed with UAV and sound frequency domain analysis. In Proceedings of the 2021 7th International Conference on Control, Instrumentation and Automation (ICCIA), Tabriz, Iran, 23–24 February 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–5. [Google Scholar]
- Sánchez, P.J.B.; Márquez, F.P.G. Artificial Neural Networks Applied for Wind Turbines Maintenance Management in Unmanned Aerial Vehicle Acoustic Inspection Case. 3; Springer: Berlin/Heidelberg, Germany, 2023; pp. 37–49. [Google Scholar]
- Bernalte Sánchez, P.; Segovia Ramírez, I.; García Márquez, F.P.; Pliego Marugán, A. Acoustic signals analysis from an innovative UAV inspection system for wind turbines. Struct. Health Monit. 2024. [Google Scholar] [CrossRef]
- García Márquez, F.P.; Bernalte Sánchez, P.J.; Segovia Ramírez, I. Acoustic inspection system with unmanned aerial vehicles for wind turbines structure health monitoring. Struct. Health Monit. 2022, 21, 485–500. [Google Scholar] [CrossRef]
- Tanrıverdi, H.; Karakuş, G.; Ulukan, A. Wind turbine inspection with drone: Advantages and disadvantages. J. Energy Syst. 2023, 7, 57–66. [Google Scholar] [CrossRef]
- Kolios, A. Assessing Risks for the Use of Drones for Wind Turbine Inspections. J. Phys. Conf. Ser. 2024, 2767, 032030. [Google Scholar] [CrossRef]
- Chen, W.; Liu, J.; Guo, H.; Kato, N. Toward robust and intelligent drone swarm: Challenges and future directions. IEEE Netw. 2020, 34, 278–283. [Google Scholar] [CrossRef]
- Eid, S.E.; Dol, S.S. Design and development of lightweight-high endurance unmanned aerial vehicle for offshore search and rescue operation. In Proceedings of the 2019 Advances in Science and Engineering Technology International Conference, Dubai, United Arab Emirates, 26 March–10 April 2019. [Google Scholar]
- Wang, J.; Zhou, K.; Xing, W.; Li, H.; Yang, Z. Applications, evolutions, and challenges of drones in maritime transport. J. Mar. Sci. Eng. 2023, 11, 2056. [Google Scholar] [CrossRef]
- Kim, J.; Choi, Y.; Jeon, S.; Kang, J.; Cha, H. Optrone: Maximizing performance and energy resources of drone batteries. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2020, 39, 3931–3943. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Fernandes, S.; Shihab, M.; Waleed, D. Using small capacity fuel cells onboard drones for battery cooling: An experimental study. Appl. Sci. 2018, 8, 942. [Google Scholar] [CrossRef]
- Choi, Y.; Schonfeld, P.M. Optimization of multi-package drone deliveries considering battery capacity. In Proceedings of the 96th Annual Meeting of the Transportation Research Board, Washington, DC, USA, 8–12 January 2017; pp. 8–12. [Google Scholar]
- Varghese, C.K.; Abraham, A.; Das, S.A.; Joseph, G.A.; Vaidappilly, S.G.; Christopher, K. Design and Fabrication of a Drone for Payload Delivery. AIP Conf. Proc. 2024, 3134, 130008. [Google Scholar]
- Dorling, K.; Heinrichs, J.; Messier, G.G.; Magierowski, S. Vehicle routing problems for drone delivery. IEEE Trans. Syst. Man Cybern. Syst. 2016, 47, 70–85. [Google Scholar] [CrossRef]
Aspect | Camera-Based | Thermal Imaging | LiDAR | Ultrasonic | Acoustic Emission |
---|---|---|---|---|---|
Defects detected | Surface cracks, erosion. | Subsurface cracks, delamination | Surface deformation, geometry. | Internal cracks, voids. | Real-time crack propagation. |
Advantages | Simple, visual evidence. | Non-contact, works in low light. | Precise 3D models. | Accurate for internal flaws. | Real-time monitoring. |
Limitations | Surface-only, resolution dependent. | Weather-sensitive, needs thermal gradients. | Heavy, costly, wind-sensitive. | Close range, heavy payload. | Needs active stress events. |
Cost | Low. | Moderate. | High. | High. | Moderate to high. |
Adoption | Widely used. | Increasing. | Selective. | Limited. | Rare, experimental. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heo, S.-J.; Na, W.S. Review of Drone-Based Technologies for Wind Turbine Blade Inspection. Electronics 2025, 14, 227. https://doi.org/10.3390/electronics14020227
Heo S-J, Na WS. Review of Drone-Based Technologies for Wind Turbine Blade Inspection. Electronics. 2025; 14(2):227. https://doi.org/10.3390/electronics14020227
Chicago/Turabian StyleHeo, Seong-Jun, and Wongi S. Na. 2025. "Review of Drone-Based Technologies for Wind Turbine Blade Inspection" Electronics 14, no. 2: 227. https://doi.org/10.3390/electronics14020227
APA StyleHeo, S.-J., & Na, W. S. (2025). Review of Drone-Based Technologies for Wind Turbine Blade Inspection. Electronics, 14(2), 227. https://doi.org/10.3390/electronics14020227