Impedance Resonant Channel Shaping for Current Ringing Suppression in Dual-Active Bridge Converters
Abstract
1. Introduction
2. The Impedance Modeling of Dab Magnetic Tank
3. Current Ringing Mitigation by Channel Shaping
3.1. Methodology of Chanel Shaping
3.2. Simulation Validation
3.3. Robustness Design Under Component Tolerances
3.4. Comparative Study for Current Ringing Mitigation
4. Experimental Validation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liserre, M.; Buticchi, G.; Andresen, M.; De Carne, G.; Costa, L.F.; Zou, Z.-X. The Smart Transformer: Impact on the Electric Grid and Technology Challenges. IEEE Ind. Electron. Mag. 2016, 10, 46–58. [Google Scholar] [CrossRef]
- Huber, J.; Kolar, J.W. Solid-state transformers: On the origins and evolution of key concepts. IEEE Ind. Electron. Mag. 2016, 10, 19–28. [Google Scholar] [CrossRef]
- Huang, A.Q. Medium-Voltage Solid-State Transformer. IEEE Ind. Electron. Mag. 2016, 10, 29–42. [Google Scholar] [CrossRef]
- She, X.; Huang, A.Q.; Burgos, R. Review of solid-state transformer technologies and their application in power distribution systems. IEEE J. Emerg. Sel. Top. Power Electron. 2013, 1, 186–198. [Google Scholar] [CrossRef]
- Habib, S.; Khan, M.M.; Abbas, F.; Ali, A.; Faiz, M.T.; Ehsan, F.; Tang, H. Contemporary trends in power electronics converters for charging solutions of electric vehicles. CSEE J. Power Energy Syst. 2020, 6, 911–929. [Google Scholar] [CrossRef]
- Ahmad, A.; Qin, Z.; Wijekoon, T.; Bauer, P. An Overview on Medium Voltage Grid Integration of Ultra-Fast Charging Stations: Current Status and Future Trends. IEEE Open J. Ind. Electron. Soc. 2022, 3, 420–447. [Google Scholar] [CrossRef]
- Shamshuddin, M.A.; Rojas, F.; Cardenas, R.; Pereda, J.; Diaz, M.; Kennel, R. Solid State Transformers: Concepts, Classification, and Control. Energies 2020, 13, 2319. [Google Scholar] [CrossRef]
- Rehman, A.; Imran-Daud, M.; Haider, S.K.; Rehman, A.U.; Shafiq, M.; Eldin, E.T. Comprehensive Review of Solid-State Transformers in the Distribution System: From High Voltage Power Components to the Field Application. Symmetry 2022, 14, 2027. [Google Scholar] [CrossRef]
- Moghe, R.; Ozpineci, B.; Tolbert, L.M. Review of Medium Voltage Solid State Transformer Technology. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 534–547. [Google Scholar]
- Adabi, M.E.; Martinez-Velasco, J.A. Solid state transformer technologies and applications: A bibliographical survey. AIMS Energy 2018, 6, 291–338. [Google Scholar] [CrossRef]
- Divan, D.; Johal, H. Distributed FACTS—A New Concept for Realizing Grid Power Flow Control. IEEE Trans. Power Electron. 2007, 22, 2253–2260. [Google Scholar] [CrossRef]
- Zhu, R.; De Carne, G.; Deng, F.; Liserre, M. Integration of Large Photovoltaic and Wind System by Means of Smart Transformer. IEEE Trans. Ind. Appl. 2017, 53, 11787–11797. [Google Scholar] [CrossRef]
- Kim, D.U.; Park, J.H.; Lee, S.H.; Kim, S. Development of Medium Voltage Single-Phase Solid-State Transformer for High-Speed Railway Vehicles: Reduced-Scale Verification Results. IET Electr. Power Appl. 2025, 10, 555–569. [Google Scholar] [CrossRef]
- Shen, Z.; Wang, H.; Shen, Y.; Qin, Z.; Blaabjerg, F. An improved stray capacitance model for inductors. IEEE Trans. Power Electron. 2019, 34, 11153–11170. [Google Scholar] [CrossRef]
- Wang, Z.; Bak, C.L.; Wang, H.; Sørensen, H.; da Silva, F.F. Multiphysics digital model of the high frequency transformer for power electronics application considering electro-thermal interactions. IEEE Trans. Power Electron. 2023, 38, 14345–14359. [Google Scholar] [CrossRef]
- Bakri, R.; Corgne, G.; Margueron, X. Thermal modeling of planar magnetics: Fundamentals, review and key points. IEEE Access 2023, 11, 41654–41679. [Google Scholar] [CrossRef]
- Sun, J. Impedance-based stability criterion for grid-connected inverters. IEEE Trans. Power Electron. 2011, 26, 3075–3078. [Google Scholar] [CrossRef]
- Rygg, A.; Molinas, M.; Zhang, C.; Cai, X. On the equivalence and impact on stability of impedance modeling of power electronic converters in different domains. IEEE J. Emerg. Sel. Top. Power Electron. 2017, 5, 1444–1454. [Google Scholar] [CrossRef]
- Wang, P.; Chen, X.; Tong, C.; Jia, P.; Wen, C. Large- and small-signal average-value modeling of dual-active-bridge DC–DC converter with triple-phase-shift control. IEEE Trans. Power Electron. 2021, 36, 9237–9250. [Google Scholar] [CrossRef]
- Shao, S.; Chen, L.; Shan, Z.; Gao, F.; Chen, H.; Sha, D.; Dragičević, T. Modeling and advanced control of dual-active-bridge DC–DC converters: A review. IEEE Trans. Power Electron. 2021, 37, 1524–1547. [Google Scholar] [CrossRef]
- Xiao, Z.; Lei, W.; Gao, G.; Wang, H.; Mu, W. Simplified discrete-time modeling for convenient stability prediction of DAB converter in energy storage system. IEEE Trans. Power Electron. 2024, 39, 12636–12651. [Google Scholar] [CrossRef]
- Dey, P.; Paul, S.; Basu, K. Analytical Closed-form ZVS Boundaries of Triple-Phase-Shift Modulated Dual Active Bridge Converter. IEEE Trans. Power Electron. 2025; early access. [Google Scholar] [CrossRef]
- Bossi, G.; Boi, M.; Floris, A.; Damiano, A. Mitigation of current ringing effects in a dual active bridge converter. In Proceedings of the 2023 IEEE 32nd International Symposium on Industrial Electronics (ISIE), Helsinki, Finland, 19–21 June 2023; pp. 1–6. [Google Scholar]
- Qin, Z.; Shen, Z.; Blaabjerg, F.; Bauer, P. Transformer Current Ringing in Dual Active Bridge Converters. IEEE Trans. Ind. Electron. 2021, 68, 12130–12140. [Google Scholar] [CrossRef]
- Naik, N.; Vyjayanthi, C.; Modi, C. Filter-Based Active Damping of DAB Converter to Lower Battery Degradation in EV Fast Charging Application. IEEE Access 2023, 11, 74277–74289. [Google Scholar] [CrossRef]
- López Gajardo, M.; Izquierdo Gómez, P.; Mijatovic, N.; Pérez, J.R.; Dragicevic, T. Generalized Data-Driven Model to Minimize Current Ringing in DAB Power Converter. IEEE J. Emerg. Sel. Top. Ind. Electron. 2024, 5, 126–137. [Google Scholar] [CrossRef]
Method | Domain and Type | Implementation Complexity | Advantages and Limitations |
---|---|---|---|
Proposed Method | Circuit-Level (Passive) | Low | Adv: Analytically derived in closed-form, ensuring robustness and simplicity. Low implementation cost. Lim: Adds physical components and introduces minor, targeted dissipative losses. |
Active Damping [25] | Control-Side (Active) | High | Adv: Suppresses resonance with near-zero added hardware loss; adaptable via control software. Lim: Requires high-bandwidth sensors and a fast controller. Control loop stability and robustness can be challenging. |
Magnetics/Layout Optimization [24] | Hardware Magnetics (Passive) | Moderate to High (Design Phase) | Adv: Mitigates the root cause by optimizing the physical structure (e.g., windings, shielding); adds no extra components. Lim: Requires deep expertise in magnetics design; changes are fixed at design time and cannot be retrofitted. |
ML-Assisted Magnetics Design [26] | Hardware Magnetics (Passive) | High (Design Phase) | Adv: Enables co-optimization of complex magnetic structures for multiple objectives (ringing, EMI, efficiency). Lim: Highly computationally intensive; requires large datasets or extensive simulation for model training; fixed at design time. |
Parameter | Value | Parameter | Value |
---|---|---|---|
Input Voltage, | 250 V | Support Capacitor, | 100 μF |
Output Voltage, | 250 V | Support Capacitor, | 100 μF |
Switching Frequency, | 10 kHz | Parasitic Capacitance, | 630 pF |
Phase-Shift Inductor, | 150 μH | DC-Blocking Capacitor, | 100 μF |
Phase-Shift Inductor, | 15 μH | Transformer Turns Count, N | 24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Sun, Z.; Li, P.; Ai, J.; Wu, C.; Shen, Z.; Deng, F. Impedance Resonant Channel Shaping for Current Ringing Suppression in Dual-Active Bridge Converters. Electronics 2025, 14, 3823. https://doi.org/10.3390/electronics14193823
Wang Y, Sun Z, Li P, Ai J, Wu C, Shen Z, Deng F. Impedance Resonant Channel Shaping for Current Ringing Suppression in Dual-Active Bridge Converters. Electronics. 2025; 14(19):3823. https://doi.org/10.3390/electronics14193823
Chicago/Turabian StyleWang, Yaoqiang, Zhaolong Sun, Peiyuan Li, Jian Ai, Chan Wu, Zhan Shen, and Fujin Deng. 2025. "Impedance Resonant Channel Shaping for Current Ringing Suppression in Dual-Active Bridge Converters" Electronics 14, no. 19: 3823. https://doi.org/10.3390/electronics14193823
APA StyleWang, Y., Sun, Z., Li, P., Ai, J., Wu, C., Shen, Z., & Deng, F. (2025). Impedance Resonant Channel Shaping for Current Ringing Suppression in Dual-Active Bridge Converters. Electronics, 14(19), 3823. https://doi.org/10.3390/electronics14193823