Advanced Technologies for Renewable Energy Systems and Their Applications
1. Introduction
2. A Short Review of the Contributions in This Article Collection
Author Contributions
Conflicts of Interest
List of Contributions
- Weng, Z.; Zhou, J.; Song, X.; Jing, L. Research on Orderly Charging Strategy for Electric Vehicles Based on Electricity Price Guidance and Reliability Evaluation of Microgrid. Electronics 2023, 12, 4876. https://doi.org/10.3390/electronics12234876.
- Swibki, T.; Ben Salem, I.; Kraiem, Y.; Abbes, D.; El Amraoui, L. Imitation Learning-Based Energy Management Algorithm: Lille Catholic University Smart Grid Demonstrator Case Study. Electronics 2023, 12, 5048. https://doi.org/10.3390/electronics12245048.
- Song, H.; Wang, Y.; Sun, X.-E. An Optimal SVD Filtering Method for Measurement Accuracy Improvement against Harmonic Disturbance in Grid-Connected Inverters. Electronics 2024, 13, 4087. https://doi.org/10.3390/electronics13204087.
- Pinto, J.; Grasel, B.; Baptista, J. Analysis of Supraharmonics Emission in Power Grids: A Case Study of Photovoltaic Inverters. Electronics 2024, 13, 4880. https://doi.org/10.3390/electronics13244880.
- Adamas-Pérez, H.; Ponce-Silva, M.; Mina-Antonio, J.D.; Claudio-Sánchez, A.; Rodríguez-Benítez, O. Assessment of Energy Conversion in Passive Components of Single-Phase Photovoltaic Systems Interconnected to the Grid. Electronics 2023, 12, 3341. https://doi.org/10.3390/electronics12153341.
- Tian, Q.; Chen, H.; Ding, S.; Shu, L.; Wang, L.; Huang, J. Remaining Useful Life Prediction Method of PEM Fuel Cells Based on a Hybrid Model. Electronics 2023, 12, 3883. https://doi.org/10.3390/electronics12183883.
References
- Yang, Y.; Xia, S.; Huang, P.; Qian, J. Energy Transition: Connotations, Mechanisms and Effects. Energy Strategy Rev. 2024, 52, 101320. [Google Scholar] [CrossRef]
- Gholami, K.; Nazari, A.; Thiruvady, D.; Moghaddam, V.; Rajasegarar, S.; Chiu, W.-Y. Risk-Constrained Community Battery Utilisation Optimisation for Electric Vehicle Charging with Photovoltaic Resources. J. Energy Storage 2024, 97, 112646. [Google Scholar] [CrossRef]
- Seljom, P.; Kvalbein, L.; Hellemo, L.; Kaut, M.; Ortiz, M.M. Stochastic Modelling of Variable Renewables in Long-Term Energy Models: Dataset, Scenario Generation & Quality of Results. Energy 2021, 236, 121415. [Google Scholar] [CrossRef]
- Liu, J.; Huang, S.; Shuai, Q.; Gu, T.; Zhang, H. Sustainable Development Strategies in Power Systems: Day-Ahead Stochastic Scheduling with Multi-Sources and Customer Directrix Load Demand Response. Sustainability 2024, 16, 2589. [Google Scholar] [CrossRef]
- Icaza-Alvarez, D.; Borge-Diez, D. Techno-Economic Analysis and Optimization of the Hybrid System for a Research Campus—Case Study Center for Research, Innovation, and Technology Transfer in Cuenca-Ecuador. Energies 2025, 18, 2746. [Google Scholar] [CrossRef]
- Ahmed, I.; Razzak, M.A.; Ahmed, F. Sustainable Hybrid Renewable Energy Management System for a Community in Island: A Model Approach Utilising Hybrid Optimization of Multiple Energy Resources Optimization and Priority Setting-based Supervisory Control and Data Acquisition Operation. IET Smart Grid 2024, 7, 940–966. [Google Scholar] [CrossRef]
- Duan, Y.; Xu, Z.; Chen, H.; Wang, Y. Novel Machine Learning Approach for Enhanced Smart Grid Power Use and Price Prediction Using Advanced Shark Smell-Tuned Flexible Support Vector Machine. Sci. Rep. 2025, 15, 20909. [Google Scholar] [CrossRef]
- Ethirajan, V.; Mangaiyarkarasi, S.P. An In-Depth Survey of Latest Progress in Smart Grids: Paving the Way for a Sustainable Future through Renewable Energy Resources. J. Electr. Syst. Inf. Technol. 2025, 12, 9. [Google Scholar] [CrossRef]
- Al-Maliki, W.A.K.; Alobaid, F.; Keil, A.; Epple, B. Dynamic Process Simulation of a Molten-Salt Energy Storage System. Appl. Sci. 2021, 11, 11308. [Google Scholar] [CrossRef]
- Ong, T.-C.; Sarvghad, M.; Bell, S.; Will, G.; Steinberg, T.A.; Yin, Y.; Andersson, G.; Lewis, D. Review on the Challenges of Salt Phase Change Materials for Energy Storage in Concentrated Solar Power Facilities. Appl. Therm. Eng. 2024, 238, 122034. [Google Scholar] [CrossRef]
- Sagaria, S.; van der Kam, M.; Boström, T. Vehicle-to-Grid Impact on Battery Degradation and Estimation of V2G Economic Compensation. Appl. Energy 2025, 377, 124546. [Google Scholar] [CrossRef]
- Rao, S.P.; Olusegun, T.S.; Ranganathan, P.; Kose, U.; Goveas, N. Vehicle-to-Grid Technology: Opportunities, Challenges, and Future Prospects for Sustainable Transportation. J. Energy Storage 2025, 110, 114927. [Google Scholar] [CrossRef]
- Wang, D.; Chen, X.; Liu, X.; Li, Y.; Piao, Z.; Li, H. Dynamic Tariff Adjustment for Electric Vehicle Charging in Renewable-Rich Smart Grids: A Multi-Factor Optimization Approach to Load Balancing and Cost Efficiency. Energies 2025, 18, 4283. [Google Scholar] [CrossRef]
- Kazemtarghi, A.; Mallik, A.; Chen, Y. Dynamic Pricing Strategy for Electric Vehicle Charging Stations to Distribute the Congestion and Maximize the Revenue. Int. J. Electr. Power Energy Syst. 2024, 158, 109946. [Google Scholar] [CrossRef]
- Fang, X.; Wang, B.B.; Zhou, S.Y.; Chan, C.C. A Bilevel Dynamic Pricing Methodology for Electric Vehicle Charging Stations Considering the Drivers’ Charging Willingness. Int. Trans. Electr. Energy Syst. 2025, 2025, 6047459. [Google Scholar] [CrossRef]
- Pinto, T.; Vale, Z. AiD-EM: Adaptive Decision Support for Electricity Markets Negotiations. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence Organization, Macao, China, 10–16 August 2019; pp. 6563–6565. [Google Scholar]
- Anthony Jnr, B. Distributed Energy Prosumer Communities and the Application of Emerging Technologies: A Systematic Literature Review. Sustain. Futures 2025, 9, 100794. [Google Scholar] [CrossRef]
- Stephen Ball, C.; Degischer, D. IoT Implementation for Energy System Sustainability: The Role of Actors and Related Challenges. Util. Policy 2024, 90, 101769. [Google Scholar] [CrossRef]
- Askeland, M.; Bjarghov, S.; Rana, R.; Morch, A.; Taxt, H. Smart Flexibility in Energy Communities: Scenario-Based Analysis of Distribution Grid Implications and Economic Impacts. Smart Energy 2025, 18, 100184. [Google Scholar] [CrossRef]
- Becchetti, L.; Salustri, F. Renewable Energy Communities and the Ecological Transition: A Game Theoretic Bargaining Approach. Util. Policy 2025, 96, 102006. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, N.; Du, Q. The Governance of PPP Project Resilience: A Hybrid DMATEL-ISM Approach. Systems 2025, 13, 277. [Google Scholar] [CrossRef]
- Mohanty, A.; Ramasamy, A.K.; Verayiah, R.; Bastia, S.; Dash, S.S.; Cuce, E.; Khan, T.M.Y.; Soudagar, M.E.M. Power System Resilience and Strategies for a Sustainable Infrastructure: A Review. Alex. Eng. J. 2024, 105, 261–279. [Google Scholar] [CrossRef]
- Pinto, T.; Morais, H.; Corchado, J.M. Adaptive Entropy-Based Learning with Dynamic Artificial Neural Network. Neurocomputing 2019, 338, 432–440. [Google Scholar] [CrossRef]
- Lyden, A.; Brown, C.S.; Kolo, I.; Falcone, G.; Friedrich, D. Seasonal Thermal Energy Storage in Smart Energy Systems: District-Level Applications and Modelling Approaches. Renew. Sustain. Energy Rev. 2022, 167, 112760. [Google Scholar] [CrossRef]
- Sarra, Z.; Bouziane, M.; Bouddou, R.; Benbouhenni, H.; Mekhilef, S.; Elbarbary, Z.M.S. Intelligent Control of Hybrid Energy Storage System Using NARX-RBF Neural Network Techniques for Microgrid Energy Management. Energy Rep. 2024, 12, 5445–5461. [Google Scholar] [CrossRef]
- Kumar, D.; Chauhan, Y.K.; Pandey, A.S.; Srivastava, A.K.; Vijayaraghavan, R.R.; Elavarasan, R.M.; Shafiullah, G.M. Optimal Sustainable Energy Management for Isolated Microgrid: A Hybrid Jellyfish Search-Golden Jackal Optimization Approach. Sustainability 2025, 17, 4801. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baptista, J.; Pinto, T. Advanced Technologies for Renewable Energy Systems and Their Applications. Electronics 2025, 14, 3815. https://doi.org/10.3390/electronics14193815
Baptista J, Pinto T. Advanced Technologies for Renewable Energy Systems and Their Applications. Electronics. 2025; 14(19):3815. https://doi.org/10.3390/electronics14193815
Chicago/Turabian StyleBaptista, José, and Tiago Pinto. 2025. "Advanced Technologies for Renewable Energy Systems and Their Applications" Electronics 14, no. 19: 3815. https://doi.org/10.3390/electronics14193815
APA StyleBaptista, J., & Pinto, T. (2025). Advanced Technologies for Renewable Energy Systems and Their Applications. Electronics, 14(19), 3815. https://doi.org/10.3390/electronics14193815