A Real-Time Monitoring Device for Assessing Photovoltaic Performance in Residential Settings
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statements
Conflicts of Interest
References
- International Energy Agency. World Energy Outlook 2021; IEA: Paris, France, 2021; Available online: https://www.iea.org/reports/world-energy-outlook-2021 (accessed on 18 February 2025).
- REN21. Renewables Global Status Report 2021; REN21: Paris, France, 2021; Available online: https://www.ren21.net/reports/global-status-report/ (accessed on 18 February 2025).
- Intergovernmental Panel on Climate Change. Global Warming of 1.5 °C: An IPCC Special Report; IPCC: Geneva, Switzerland, 2018; Available online: https://www.ipcc.ch/sr15/ (accessed on 18 February 2025).
- United Nations Environment Programme. Emissions Gap Report 2021; UNEP: Nairobi, Kenya, 2021; Available online: https://www.unep.org/resources/emissions-gap-report-2021 (accessed on 18 February 2025).
- International Renewable Energy Agency (IRENA). Renewable Power Generation Costs in 2020; IRENA: Abu Dhabi, United Arab Emirates, 2020. [Google Scholar]
- Solar Energy Industries Association. U.S. Solar Market Insight 2020 Q4; SEIA: Washington, DC, USA, 2020; Available online: https://www.seia.org/us-solar-market-insight (accessed on 18 February 2025).
- Mellit, A.; Kalogirou, S.A. Artificial intelligence techniques for photovoltaic applications: A review. Renew. Sustain. Energy Rev. 2011, 15, 2714–2733. [Google Scholar] [CrossRef]
- Woyte, A.; Nijs, J.; Belmans, R. Partial shadowing of photovoltaic arrays with different system configurations: Literature review and field test results. Sol. Energy 2003, 74, 217–233. [Google Scholar] [CrossRef]
- Ekins-Daukes, N.J. Photovoltaic solar energy: Conversion, storage and applications. Nat. Rev. Phys. 2019, 1, 480–489. [Google Scholar]
- Asdrubali, F.; Grignaffini, F.; Rotili, S.; Cotana, S. A review of smart monitoring systems for PV plants. Int. J. Photoenergy 2019, 2019, 1–17. [Google Scholar]
- Green, M.A.; Dunlop, E.D.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Hao, X. Solar cell efficiency tables (Version 58). Prog. Photovolt. Res. Appl. 2021, 29, 657–667. [Google Scholar] [CrossRef]
- Marion, B.; Adelstein, J.; Boyle, K.; Hayden, H.; Hammond, B.; Fletcher, T.; Canada, B.; Narang, D.; Kimber, A.; Mitchell, L.; et al. Performance parameters for grid-connected PV systems. In Proceedings of the Conference Record of the 31st IEEE Photovoltaic Specialists Conference, Lake Buena Vista, FL, USA, 3–7 January 2005; pp. 1601–1606. [Google Scholar]
- Louwen, A.; van Sark, W.; Schropp, R.; Turkenburg, W. A cost roadmap for PV module technology. Prog. Photovolt. Res. Appl. 2016, 24, 904–913. [Google Scholar]
- Markvart, T. Solar Electricity, 2nd ed.; John Wiley & Sons: Chichester, UK, 2000. [Google Scholar]
- Makrides, G.; Zinsser, B.; Norton, M.; Georghiou, G.E. Solar energy yield predictions and cost assessments of photovoltaic systems. Renew. Energy 2010, 35, 1297–1304. [Google Scholar]
- Yang, Y.; Tian, H.; Wang, H.; Blaabjerg, F. A review of maximum power point tracking in photovoltaic systems under partial shading conditions. Renew. Sustain. Energy Rev. 2015, 41, 893–905. [Google Scholar]
- Kanchev, H.; Lu, D.; Colas, F.; Lazarov, V.; Francois, B. Energy management and operational planning of a microgrid with a PV-based active generator for smart grid applications. IEEE Trans. Ind. Electron. 2011, 58, 4583–4592. [Google Scholar] [CrossRef]
- Kutkut, N.; Divan, D.M.; Novotny, D.W.; Balog, R. Method for Solving the Partial Shading Problem in Photovoltaic Arrays. U.S. Patent 6,262,892, 17 July 2001. [Google Scholar]
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes, 4th ed.; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Wolf, M.; Rauschenbach, H. Series resistance effects on solar cell measurements. Adv. Energy Convers. 1963, 3, 455–479. [Google Scholar] [CrossRef]
- Chouder, A.; Silvestre, S. Automatic supervision and fault detection of PV systems based on power losses analysis. Energy Convers. Manag. 2010, 51, 1929–1937. [Google Scholar] [CrossRef]
- Pavan, M.; Mellit, A. Performance prediction of grid-connected photovoltaic systems using artificial neural networks. Energy 2011, 36, 123–132. [Google Scholar]
- Ayad, M.Y.; Hatata, A.Y.; Marei, M.I. Design and implementation of smart monitoring system for standalone PV plant. IEEE Access 2019, 7, 139073–139086. [Google Scholar]
- Khatib, T.; Mohamed, A.; Sopian, K. A review of solar energy modeling techniques. Renew. Sustain. Energy Rev. 2012, 16, 2864–2869. [Google Scholar] [CrossRef]
- Eltamaly, A.; Alolah, A.; Al-Shehri, A. Modeling and simulation of grid-connected hybrid PV-wind power system. Int. J. Electr. Power Energy Syst. 2014, 62, 89–98. [Google Scholar]
- Iqbal, M. An Introduction to Solar Radiation; Academic Press: Toronto, ON, Canada, 1983. [Google Scholar]
- Messenger, R.; Ventre, J. Photovoltaic Systems Engineering, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Salmi, T.; Bouzguenda, M.; Gastli, A.; Masmoudi, A. Matlab/Simulink based modeling of solar photovoltaic cell. Int. J. Renew. Energy Res. 2012, 2, 213–218. [Google Scholar]
- Paredes-Parra, J.M.; Mateo-Aroca, A.; Molina-García, A.; García-Sánchez, A.J. PV module monitoring system based on low-cost solutions: Wireless Raspberry application and assessment. Energies 2018, 11, 3051. [Google Scholar] [CrossRef]
- Cheragee, S.H.; Hassan, N.; Ahammed, S.; Islam, A.Z.M.T. A study of IoT based real-time solar power remote monitoring system. Int. J. Ambient. Syst. Appl. 2021, 9, 27–36. [Google Scholar]
- Adhya, S.; Saha, D.; Das, A.; Jana, J.; Saha, H. An IoT based smart solar photovoltaic remote monitoring and control unit. In Proceedings of the 2016 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC), Kolkata, India, 28–30 January 2016; pp. 432–436. [Google Scholar] [CrossRef]
- Demir, B.E. A New Low-Cost IoT Based Monitoring System Design for Stand-Alone Solar Photovoltaic Plant and Power Estimation. Preprints.org 2023. [CrossRef]
- Akhtar, M.N.; Khan, M.T.A.; Siddiqui, M.F.N.; Ahmad, S. Low-cost Arduino-based data logger for on-grid photovoltaic system monitoring. Eur. J. Electr. Comput. Eng. 2024, 8, 7–12. [Google Scholar]
- Little, M.; Blanchard, R. Remote Monitoring Unit for Solar Home Systems: A Field Trial; Conference Contribution; Loughborough University: Loughborough, UK, 2023. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabalan, A.; Jiorle, C.; Abouelnagga, A. A Real-Time Monitoring Device for Assessing Photovoltaic Performance in Residential Settings. Electronics 2025, 14, 3771. https://doi.org/10.3390/electronics14193771
Kabalan A, Jiorle C, Abouelnagga A. A Real-Time Monitoring Device for Assessing Photovoltaic Performance in Residential Settings. Electronics. 2025; 14(19):3771. https://doi.org/10.3390/electronics14193771
Chicago/Turabian StyleKabalan, Amal, Colton Jiorle, and Abdelghany Abouelnagga. 2025. "A Real-Time Monitoring Device for Assessing Photovoltaic Performance in Residential Settings" Electronics 14, no. 19: 3771. https://doi.org/10.3390/electronics14193771
APA StyleKabalan, A., Jiorle, C., & Abouelnagga, A. (2025). A Real-Time Monitoring Device for Assessing Photovoltaic Performance in Residential Settings. Electronics, 14(19), 3771. https://doi.org/10.3390/electronics14193771