Fairness-Based User Scheduling and Performance Optimization in Energy Harvesting Cognitive Network
Abstract
1. Introduction
- Novel expression for the outage probability (OP) of a CRN with an EH-relay and CDF-based user scheduling for fairness in channel access to the secondary users is obtained.
- An asymptotic expression for the OP is derived to study the effect of the power splitting factor on the system performance.
- We formulate the objective function for optimal power splitting factor, and, by using numerical methods, obtain the optimum value that minimizes the OP of the system.
- We also obtain the analytical expression for the throughput of the system.
2. System Model
CDF-Based Scheduling
3. Outage Probability
3.1. Asymptotic Outage
3.2. Optimal Power Splitting Factor
3.3. Throughput
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Derivation of I1
Appendix B. Derivation of I2
Appendix C. Derivation of I3
Appendix D. Derivation of
References
- Adedoyin, M.A.; Falowo, O.E. Combination of Ultra-Dense Networks and Other 5G Enabling Technologies: A Survey. IEEE Access 2020, 8, 22893–22932. [Google Scholar] [CrossRef]
- Elshrkasi, A.; Dimyati, K.; Ahmad, K.A.B.; Bin Mohamed Said, M.F. Enhancement of cellular networks via an improved clustering technique with D2D communication for mission-critical applications. J. Netw. Comput. Appl. 2022, 206, 103482. [Google Scholar] [CrossRef]
- Rajavel, S.; Devaraj, S.A.; Roobert, A.A.; Kumar, O.P.; Vincent, S. Energy efficient relay selection framework for 5G communication using cognitive radio networks. Sci. Rep. 2025, 15, 15566. [Google Scholar] [CrossRef]
- Hindia, M.; Qamar, F.; Ojukwu, H.; Dimyati, K.; M Al-samman, A.; Sadegh Amiri, I. On Platform to Enable the Cognitive Radio Over 5G Networks. Wirel. Pers. Commun. 2020, 113, 1241–1262. [Google Scholar] [CrossRef]
- Zaheer, O.; Ali, M.; Imran, M.; Zubair, H.; Naeem, M. Efficient resource allocation for 5G/6G cognitive radio networks using probabilistic interference models. Phys. Commun. 2024, 64, 102335. [Google Scholar] [CrossRef]
- Khalek, N.A.; Hamouda, W. From Cognitive to Intelligent Secondary Cooperative Networks for the Future Internet: Design, Advances, and Challenges. IEEE Netw. 2021, 35, 168–175. [Google Scholar] [CrossRef]
- Peng, C.; Wang, G.; Liu, H. Joint Power Control and Resource Allocation with Rate Fairness Consideration for SWIPT-Based Cognitive Two-Way Relay Networks. Sensors 2023, 23, 7620. [Google Scholar] [CrossRef] [PubMed]
- Duong, T.Q.; Yeoh, P.L.; Bao, V.N.Q.; Elkashlan, M.; Yang, N. Cognitive relay networks with multiple primary transceivers under spectrum-sharing. IEEE Signal Process. Lett. 2012, 19, 741–744. [Google Scholar] [CrossRef]
- Chen, H.; Zhai, C.; Li, Y.; Vucetic, B. Cooperative strategies for wireless-powered communications: An overview. IEEE Wirel. Commun. 2018, 25, 112–119. [Google Scholar] [CrossRef]
- Hu, J.; Beaulieu, N.C. Performance analysis of decode-and-forward relaying with selection combining. IEEE Commun. Lett. 2007, 11, 489–491. [Google Scholar] [CrossRef]
- Yang, N.; Elkashlan, M.; Yuan, J. Outage probability of multiuser relay networks in Nakagami-m fading channels. IEEE Trans. Veh. Technol. 2010, 59, 2120–2132. [Google Scholar] [CrossRef]
- Chalasani, S.; Conrad, J.M. A survey of energy harvesting sources for embedded systems. In Proceedings of the IEEE SoutheastCon 2008, Huntsville, AL, USA, 3–6 April 2008; pp. 442–447. [Google Scholar]
- Singla, J.; Mahajan, R.; Bagai, D. A survey on energy harvesting cognitive radio networks. In Proceedings of the 2018 6th Edition of International Conference on Wireless Networks & Embedded Systems (WECON), Rajpura, India, 16–17 November 2018; pp. 6–10. [Google Scholar]
- Zhang, R.; Ho, C.K. MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Trans. Wirel. Commun. 2013, 12, 1989–2001. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, R.; Ho, C.K. Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Trans. Commun. 2013, 61, 4754–4767. [Google Scholar] [CrossRef]
- Krikidis, I.; Timotheou, S.; Sasaki, S. RF energy transfer for cooperative networks: Data relaying or energy harvesting? IEEE Commun. Lett. 2012, 16, 1772–1775. [Google Scholar] [CrossRef]
- Masadeh, A.; Kamal, A.E.; Wang, Z. Cognitive radio networking with cooperative and energy harvesting. In Proceedings of the IEEE VTC Fall, Toronto, ON, Canada, 24–27 September 2017. [Google Scholar]
- Wang, Y.; Chen, S.; Wu, Y.; Zhao, C. Maximizing Average Throughput of Cooperative Cognitive Radio Networks Based on Energy Harvesting. Sensors 2022, 22, 8921. [Google Scholar] [CrossRef]
- Liu, Y.; Mousavifar, S.A.; Deng, Y.; Leung, C.; Elkashlan, M. Wireless energy harvesting in a cognitive relay network. IEEE Trans. Wirel. Commun. 2015, 15, 2498–2508. [Google Scholar] [CrossRef]
- Kalamkar, S.S.; Banerjee, A. Interference-assisted wireless energy harvesting in cognitive relay network with multiple primary transceivers. In Proceedings of the 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, CA, USA, 6–10 December 2015; pp. 1–6. [Google Scholar]
- Xu, C.; Zheng, M.; Liang, W.; Yu, H.; Liang, Y.C. Outage performance of underlay multihop cognitive relay networks with energy harvesting. IEEE Commun. Lett. 2016, 20, 1148–1151. [Google Scholar] [CrossRef]
- Dong, L.; Hu, G.; Tang, Q.; Zhao, C.; Yang, F.; Yang, Y. Advanced Aerodynamics-Driven Energy Harvesting Leveraging Galloping-Flutter Synergy. Adv. Funct. Mater. 2025, 35, 2414324. [Google Scholar] [CrossRef]
- Wang, J.; Pei, H.; Wang, R.; Lin, R.; Fang, Z.; Shu, F. Defense Management Mechanism for Primary User Emulation Attack Based on Evolutionary Game in Energy Harvesting Cognitive Industrial Internet of Things. IEEE Trans. Netw. Serv. Manag. 2024, 21, 4777–4786. [Google Scholar] [CrossRef]
- Xie, D.; Lai, X.; Lei, X.; Fan, L. Cognitive multiuser energy harvesting decode-and-forward relaying system with direct links. IEEE Access 2017, 6, 5596–5606. [Google Scholar] [CrossRef]
- Fan, L.; Lei, X.; Duong, T.Q.; Hu, R.Q.; Elkashlan, M. Multiuser cognitive relay networks: Joint impact of direct and relay communications. IEEE Trans. Wirel. Commun. 2014, 13, 5043–5055. [Google Scholar] [CrossRef]
- Tashman, D.H.; Hamouda, W.; Moualeu, J.M. Overlay Cognitive Radio Networks Enabled Energy Harvesting With Random AF Relays. IEEE Access 2022, 10, 113035–113045. [Google Scholar] [CrossRef]
- Si, W.; Zhang, L.; Zhai, C.; Zheng, L.; Yan, J.; Liu, H.; Xu, Z. Nonlinear energy harvesting based cognitive relaying with best relay selection. Phys. Commun. 2025, 69, 102603. [Google Scholar] [CrossRef]
- Hemachandra, K.T.; Beaulieu, N.C. Outage analysis of opportunistic scheduling in dual-hop multiuser relay networks in the presence of interference. IEEE Trans. Commun. 2013, 61, 1786–1796. [Google Scholar] [CrossRef]
- Guimarães, F.R.V.; Da Costa, D.B.; Tsiftsis, T.A.; Cavalcante, C.C.; Karagiannidis, G.K. Multiuser and multirelay cognitive radio networks under spectrum-sharing constraints. IEEE Trans. Veh. Technol. 2013, 63, 433–439. [Google Scholar] [CrossRef]
- Tran, L.N.; Hong, E.K. Multiuser diversity for successive zero-forcing dirty paper coding: Greedy scheduling algorithms and asymptotic performance analysis. IEEE Trans. Signal Process. 2010, 58, 3411–3416. [Google Scholar] [CrossRef]
- Kandelusy, O.M.; Kirsch, N.J. Cognitive multi-user multi-relay network: A decentralized scheduling technique. IEEE Trans. Cogn. Commun. Netw. 2020, 7, 609–623. [Google Scholar] [CrossRef]
- Huaizhou, S.; Prasad, R.V.; Onur, E.; Niemegeers, I. Fairness in wireless networks: Issues, measures and challenges. IEEE Commun. Surv. Tutor. 2013, 16, 5–24. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, D. Scheduling for Long Term Proportional Fairness in a Cognitive Wireless Network with spectrum underlay. IEEE Trans. Wirel. Commun. 2010, 9, 1150–1158. [Google Scholar] [CrossRef]
- Ben-Porat, U.; Bremler-Barr, A.; Levy, H. On the exploitation of CDF based wireless scheduling. In Proceedings of the IEEE INFOCOM 2009, Rio de Janeiro, Brazil, 19–25 April 2009; pp. 2821–2825. [Google Scholar]
- Jin, H.; Leung, V.C. One bit feedback for CDF-based scheduling with resource sharing constraints. IEEE Trans. Wirel. Commun. 2013, 12, 6281–6291. [Google Scholar] [CrossRef]
- Nguyen, A.H.; Huang, Y.; Rao, B.D. Order statistics based CDF scheduling methods in multiuser heterogeneous systems. In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; pp. 424–428. [Google Scholar]
- Li, D. Fairness-based multiuser scheduling for ambient backscatter communication systems. IEEE Wirel. Commun. Lett. 2020, 9, 1150–1154. [Google Scholar] [CrossRef]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 7th ed.; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Abramowitz, M.; Stegun, I. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 5th ed.; Dover: New York, NY, USA, 1964. [Google Scholar]
Parameter | Description | Value |
---|---|---|
Power splitting factor | [0, 1] | |
Path loss exponent | 3 | |
Energy conversion efficiency | 0.7 | |
Noise variance at relay | 1 | |
Noise variance at destination | 1 |
Parameter | Truncation | |
---|---|---|
= 10 dB | k = 2 | 0.00939 |
k = 5 | 0.00939 | |
k = 10 | 0.00939 | |
k = 50 | 0.00939 | |
= 15 dB | k = 2 | 0.00298 |
k = 5 | 0.00298 | |
k = 10 | 0.00298 | |
k = 50 | 0.00298 | |
= 20 dB | k = 2 | 0.00094 |
k = 5 | 0.00094 | |
k = 10 | 0.00094 | |
k = 50 | 0.00094 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahirwal, N.; Jayanthi, N.; Mandpura, A.K. Fairness-Based User Scheduling and Performance Optimization in Energy Harvesting Cognitive Network. Electronics 2025, 14, 3459. https://doi.org/10.3390/electronics14173459
Ahirwal N, Jayanthi N, Mandpura AK. Fairness-Based User Scheduling and Performance Optimization in Energy Harvesting Cognitive Network. Electronics. 2025; 14(17):3459. https://doi.org/10.3390/electronics14173459
Chicago/Turabian StyleAhirwal, Neetu, N. Jayanthi, and Anup Kumar Mandpura. 2025. "Fairness-Based User Scheduling and Performance Optimization in Energy Harvesting Cognitive Network" Electronics 14, no. 17: 3459. https://doi.org/10.3390/electronics14173459
APA StyleAhirwal, N., Jayanthi, N., & Mandpura, A. K. (2025). Fairness-Based User Scheduling and Performance Optimization in Energy Harvesting Cognitive Network. Electronics, 14(17), 3459. https://doi.org/10.3390/electronics14173459