Blockchain-Based Task Placement and Resource Management in Edge Computing: A Survey
Abstract
1. Introduction
1.1. Role of the Blockchain in Edge Computing
- Enhanced security and privacy: Cryptographic blockchain algorithms ensure that data stored on the ledger are secure and tamper-proof, which is critical for applications where sensitive user data must be shielded from unauthorized access and malicious attacks. The blockchain can employ privacy-preserving techniques, such as zero-knowledge proofs, to ensure that user data remain confidential yet verifiable [16].
- Decentralized trust: In a multistakeholder environment, trust is crucial for collaboration and resource sharing [12]. The blockchain eliminates the need for a central authority by fostering decentralized trust via consensus mechanisms, such as proof of work (PoW) and proof of stake (PoS) [17]. This approach ensures that all transactions and interactions are transparent and verifiable by all parties.
- Efficient task placement and resource allocation: The blockchain can facilitate efficient task placement [18] and resource allocation [19] by ensuring a transparent and auditable record of resource availability and usage. Smart contracts can automate allocation, ensuring that resources are fairly and efficiently allocated based on predefined rules and conditions [12].
- Scalability and interoperability: Recent advances (e.g., sharding and layer-2 solutions) have substantially improved blockchain scalability [20], enabling the blockchain to support large-scale and dynamic MEC environments. The interoperability features of the blockchain enable it to integrate with existing MEC frameworks and protocols, allowing seamless collaboration across systems and platforms.
1.2. Contributions
- This work provides a comprehensive background on MEC and blockchain technology, highlighting their architectural components, operational models, and relevance to emerging applications.
- This work offers an in-depth analysis of the challenges in task placement and resource management in edge environments and assesses how the blockchain can address these problems via secure task offloading, decentralized resource control, and privacy-preserving mechanisms.
- This work presents a comprehensive review of recent blockchain-based approaches, critical research gaps in the existing solutions, and future research directions.
2. Research Methodology
2.1. Research Questions
2.2. Search Process
2.3. Study Selection Procedure
3. Enabling Technology for Secure and Decentralized Edge Computing
3.1. MEC Infrastructure
3.2. Blockchain Overview
3.2.1. Blockchain Architecture and Components
3.2.2. Blockchain Types
3.2.3. Why Use the Blockchain?
4. Blockchain-Enabled Task Placement and Resource Allocation in Edge Computing
4.1. Machine Learning-Based Schemes
4.2. Game Theory Schemes
4.3. Heuristic Algorithm-Based Schemes
4.4. Other Schemes
5. Open Challenges and Research Perspectives
5.1. Incentive Mechanisms
5.2. Cross-Chain Support
5.3. High Network Density
5.4. Privacy Guarantees
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
DQN | Deep Q network |
DL | Deep learning |
DRL | Deep reinforcement learning |
DT | Digital twin |
ESP | Edge service provider |
FL | Federated learning |
IIoT | Industrial Internet of Things |
IoMT | Internet of Medical Things |
IoT | Internet of Things |
MEC | Multiaccess edge computing |
M2M | Machine-to-machine |
PoS | Proof of stake |
PoW | Proof of work |
RL | Reinforcement learning |
VEC | Vehicular edge computing |
References
- Wang, H.; Ning, H.; Lin, Y.; Wang, W.; Dhelim, S.; Farha, F.; Ding, J.; Daneshmand, M. A Survey on the Metaverse: The State-of-the-Art, Technologies, Applications, and Challenges. IEEE Internet Things J. 2023, 10, 14671–14688. [Google Scholar] [CrossRef]
- Aliyu, I.; Oh, S.; Ko, N.; Um, T.W.; Kim, J. Dynamic Partial Computation Offloading for the Metaverse in In-Network Computing. IEEE Access 2024, 12, 11615–11630. [Google Scholar] [CrossRef]
- Taleb, T.; Samdanis, K.; Mada, B.; Flinck, H.; Dutta, S.; Sabella, D. On Multi-Access Edge Computing: A Survey of the Emerging 5G Network Edge Cloud Architecture and Orchestration. IEEE Commun. Surv. Tutor. 2017, 19, 1657–1681. [Google Scholar] [CrossRef]
- Filali, A.; Abouaomar, A.; Cherkaoui, S.; Kobbane, A.; Guizani, M. Multi-access edge computing: A survey. IEEE Access 2020, 8, 197017–197046. [Google Scholar] [CrossRef]
- Rashid, S.M.; Aliyu, I.; Jeong, I.K.; Um, T.W.; Kim, J. Graph neural network for in-network placement of real-time Metaverse tasks in next-generation networks. IEEE Access 2025, 13, 110999–111010. [Google Scholar] [CrossRef]
- Rashid, S.M.; Aliyu, I.; Isah, A.; Lee, J.; Oh, S.; Hahn, M.; Kim, J. Joint Wireless and Computing Resource Management with Optimal Slice Selection in in-network-edge Metaverse System. In Proceedings of the 2024 15th International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 16–18 October 2024; pp. 922–926. [Google Scholar] [CrossRef]
- Huang, Y.; Li, Y.J.; Cai, Z. Security and Privacy in Metaverse: A Comprehensive Survey. Big Data Min. Anal. 2023, 6, 234–247. [Google Scholar] [CrossRef]
- Shaverdian, P. Start with trust: Utilizing blockchain to resolve the third-party data breach problem. UCLA L. Rev. 2019, 66, 1242. [Google Scholar]
- Awan, K.A.; Ud Din, I.; Almogren, A.; Kim, B.S. Enhancing performance and security in the metaverse: Latency reduction using trust and reputation management. Electronics 2023, 12, 3362. [Google Scholar] [CrossRef]
- Liao, Z.; Pang, X.; Zhang, J.; Xiong, B.; Wang, J. Blockchain on Security and Forensics Management in Edge Computing for IoT: A Comprehensive Survey. IEEE Trans. Netw. Serv. Manag. 2022, 19, 1159–1175. [Google Scholar] [CrossRef]
- Rivera, A.V.; Refaey, A.; Hossain, E. A Blockchain Framework for Secure Task Sharing in Multi-Access Edge Computing. IEEE Netw. 2021, 35, 176–183. [Google Scholar] [CrossRef]
- Taherdoost, H. Smart contracts in blockchain technology: A critical review. Information 2023, 14, 117. [Google Scholar] [CrossRef]
- Yuan, L.; He, Q.; Tan, S.; Li, B.; Yu, J.; Chen, F.; Jin, H.; Yang, Y. Coopedge: A decentralized blockchain-based platform for cooperative edge computing. In Proceedings of the Proceedings of the Web Conference 2021, Ljubljana, Slovenia, 12–23 April 2021; pp. 2245–2257. [Google Scholar]
- Iqbal, S.; Noor, R.M.; Malik, A.W. A Review of Blockchain Empowered Vehicular Network: Performance Evaluation of Trusted Task Offloading Scheme. In Proceedings of the 11th IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), Penang, Malaysia, 3–4 April 2021; pp. 367–371. [Google Scholar] [CrossRef]
- Guo, H.; Yu, X. A survey on blockchain technology and its security. Blockchain: Res. Appl. 2022, 3, 100067. [Google Scholar] [CrossRef]
- Alghuried, A.; Alkinoon, M.; Mohaisen, M.; Wang, A.; Zou, C.C.; Mohaisen, D. Blockchain security and privacy examined: Threats, challenges, applications, and tools. The ACM Distributed Ledger Technologies: Research and Practice, ACM DLT; ACM: New York, NY, USA, 2024. [Google Scholar]
- Lepore, C.; Ceria, M.; Visconti, A.; Rao, U.P.; Shah, K.A.; Zanolini, L. A survey on blockchain consensus with a performance comparison of PoW, PoS and pure PoS. Mathematics 2020, 8, 1782. [Google Scholar] [CrossRef]
- Aliyu, I.; Yu, C.R.; Um, T.W.; Kim, J. Dynamic Redundancy-aware Blockchain-based Partial Computation Offloading for the Metaverse in In-network Computing. arXiv 2023, arXiv:2311.01914. [Google Scholar]
- Baranwal, G.; Kumar, D.; Vidyarthi, D.P. Blockchain based resource allocation in cloud and distributed edge computing: A survey. Comput. Commun. 2023, 209, 469–498. [Google Scholar] [CrossRef]
- Hafid, A.; Hafid, A.S.; Samih, M. Scaling Blockchains: A Comprehensive Survey. IEEE Access 2020, 8, 125244–125262. [Google Scholar] [CrossRef]
- Moghaddasi, K.; Rajabi, S. Blockchain-Enhanced Offloading in Mobile Edge Computing: A Systematic Review and Survey of Current Trends and Future Directions. arXiv 2024, arXiv:2403.05961. [Google Scholar] [CrossRef]
- Naren; Gaurav, A.K.; Sahu, N.; Dash, A.P.; Chalapathi, G.; Chamola, V. A survey on computation resource allocation in IoT enabled vehicular edge computing. Complex Intell. Syst. 2021, 8, 3683–3705. [Google Scholar]
- Xue, H.; Chen, D.; Zhang, N.; Dai, H.N.; Yu, K. Integration of blockchain and edge computing in internet of things: A survey. Future Gener. Comput. Syst. 2023, 144, 307–326. [Google Scholar] [CrossRef]
- Kochovski, P.; Stankovski, V. Supporting smart construction with dependable edge computing infrastructures and applications. Autom. Constr. 2018, 85, 182–192. [Google Scholar] [CrossRef]
- Hong, C.H.; Varghese, B. Resource management in fog/edge computing: A survey on architectures, infrastructure, and algorithms. ACM Comput. Surv. (CSUR) 2019, 52, 1–37. [Google Scholar] [CrossRef]
- Laroiya, C.; Saxena, D.; Komalavalli, C. Applications of blockchain technology. In Handbook of Research on Blockchain Technology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 213–243. [Google Scholar]
- Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System; Author’s Republic: Landover, MD, USA, 2008. [Google Scholar]
- Gayvoronskaya, T.; Meinel, C. Blockchain; Springer International Publishing: Cham, Switzerland, 2020; pp. 15–33. [Google Scholar]
- Wu, H.; Yao, Q.; Liu, Z.; Huang, B.; Zhuang, Y.; Tang, H.; Liu, E. Blockchain for finance: A survey. IET Blockchain 2024, 4, 101–123. [Google Scholar] [CrossRef]
- Dotan, M.; Pignolet, Y.A.; Schmid, S.; Tochner, S.; Zohar, A. Survey on blockchain networking: Context, state-of-the-art, challenges. ACM Comput. Surv. (CSUR) 2021, 54, 1–34. [Google Scholar] [CrossRef]
- Neudecker, T.; Hartenstein, H. Network Layer Aspects of Permissionless Blockchains. IEEE Commun. Surv. Tutor. 2019, 21, 838–857. [Google Scholar] [CrossRef]
- Wood, G. Ethereum: A secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 2014, 151, 1–32. [Google Scholar]
- Sanka, A.I.; Cheung, R.C. A systematic review of blockchain scalability: Issues, solutions, analysis and future research. J. Netw. Comput. Appl. 2021, 195, 103232. [Google Scholar] [CrossRef]
- Yang, R.; Wakefield, R.; Lyu, S.; Jayasuriya, S.; Han, F.; Yi, X.; Yang, X.; Amarasinghe, G.; Chen, S. Public and private blockchain in construction business process and information integration. Autom. Constr. 2020, 118, 103276. [Google Scholar] [CrossRef]
- Shammar, E.A.; Zahary, A.T.; Al-Shargabi, A.A. An attribute-based access control model for Internet of Things using hyperledger fabric blockchain. Wirel. Commun. Mob. Comput. 2022, 2022, 6926408. [Google Scholar] [CrossRef]
- Henry, R.; Herzberg, A.; Kate, A. Blockchain access privacy: Challenges and directions. IEEE Secur. Priv. 2018, 16, 38–45. [Google Scholar] [CrossRef]
- Bozkaya-Aras, E. Blockchain-Based Secure Content Caching and Computation for Edge Computing. IEEE Access 2024, 12, 47619–47629. [Google Scholar] [CrossRef]
- Li, C.; Chen, Q.; Chen, M.; Su, Z.; Ding, Y.; Lan, D.; Taherkordi, A. Blockchain enabled task offloading based on edge cooperation in the digital twin vehicular edge network. J. Cloud Comput. 2023, 12, 120. [Google Scholar] [CrossRef]
- Wang, S.; Ye, D.; Huang, X.; Yu, R.; Wang, Y.; Zhang, Y. Consortium Blockchain for Secure Resource Sharing in Vehicular Edge Computing: A Contract-Based Approach. IEEE Trans. Netw. Sci. Eng. 2021, 8, 1189–1201. [Google Scholar] [CrossRef]
- Iqbal, M.; Matulevičius, R. Exploring Sybil and Double-Spending Risks in Blockchain Systems. IEEE Access 2021, 9, 76153–76177. [Google Scholar] [CrossRef]
- Li, Y.; Xia, C.; Li, C.; Zhao, Y.; Chen, C.; Wang, T. HL-DPoS: An enhanced anti-long-range attack DPoS algorithm. Comput. Netw. 2024, 249, 110473. [Google Scholar] [CrossRef]
- Liu, C.; Sun, Z. A Multi-Agent Reinforcement Learning-Based Task-Offloading Strategy in a Blockchain-Enabled Edge Computing Network. Mathematics 2024, 12, 2264. [Google Scholar] [CrossRef]
- Chu, C.H. Task offloading based on deep learning for blockchain in mobile edge computing. Wirel. Netw. 2021, 27, 117–127. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Ding, M.; Pathirana, P.N.; Seneviratne, A.; Li, J.; Poor, H.V. Cooperative Task Offloading and Block Mining in Blockchain-Based Edge Computing with Multi-Agent Deep Reinforcement Learning. IEEE Trans. Mob. Comput. 2023, 22, 2021–2037. [Google Scholar] [CrossRef]
- Fan, W. Blockchain-Secured Task Offloading and Resource Allocation for Cloud-Edge-End Cooperative Networks. IEEE Trans. Mob. Comput. 2024, 23, 8092–8110. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Hosseinalipour, S.; Love, D.J.; Pathirana, P.N.; Brinton, C.G. Latency Optimization for Blockchain-Empowered Federated Learning in Multi-Server Edge Computing. IEEE J. Sel. Areas Commun. 2022, 40, 3373–3390. [Google Scholar] [CrossRef]
- Shakkeera, L. Efficient task scheduling and computational offloading optimization with federated learning and blockchain in mobile cloud computing. Results Control Optim. 2025, 18, 100524. [Google Scholar]
- Wang, J.; Lu, Z.; Mao, B.; Song, L. Privacy-Preserved Computation Offloading Scheme in 5G enabled IoT Based on Smart blockchain. In Proceedings of the 2022 IEEE 10th International Conference on Computer Science and Network Technology (ICCSNT), Online, 22–23 October 2022; pp. 94–98. [Google Scholar] [CrossRef]
- Luong, N.C.; Xiong, Z.; Wang, P.; Niyato, D. Optimal Auction for Edge Computing Resource Management in Mobile Blockchain Networks: A Deep Learning Approach. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6. [Google Scholar] [CrossRef]
- He, Y.; Wang, Y.; Qiu, C.; Lin, Q.; Li, J.; Ming, Z. Blockchain-Based Edge Computing Resource Allocation in IoT: A Deep Reinforcement Learning Approach. IEEE Internet Things J. 2021, 8, 2226–2237. [Google Scholar] [CrossRef]
- Li, M.; Yu, F.R.; Si, P.; Wu, W.; Zhang, Y. Resource Optimization for Delay-Tolerant Data in Blockchain-Enabled IoT With Edge Computing: A Deep Reinforcement Learning Approach. IEEE Internet Things J. 2020, 7, 9399–9412. [Google Scholar] [CrossRef]
- Iqbal, S.; Noor, R.M.; Malik, A.W.; Rahman, A.U. Blockchain-Enabled Adaptive-Learning-Based Resource-Sharing Framework for IIoT Environment. IEEE Internet Things J. 2021, 8, 14746–14755. [Google Scholar] [CrossRef]
- Muazu, T.; Yingchi, M.; Muhammad, A.U.; Ibrahim, M.; Samuel, O.; Tiwari, P. IoMT: A Medical Resource Management System Using Edge Empowered Blockchain Federated Learning. IEEE Trans. Netw. Serv. Manag. 2024, 21, 517–534. [Google Scholar] [CrossRef]
- Ayepah-Mensah, D.; Sun, G.; Boateng, G.O.; Anokye, S.; Liu, G. Blockchain-Enabled Federated Learning-Based Resource Allocation and Trading for Network Slicing in 5G. IEEE/ACM Trans. Netw. 2024, 32, 654–669. [Google Scholar] [CrossRef]
- Samy, A.; Elgendy, I.A.; Yu, H.; Zhang, W.; Zhang, H. Secure Task Offloading in Blockchain-Enabled Mobile Edge Computing with Deep Reinforcement Learning. IEEE Trans. Netw. Serv. Manag. 2022, 19, 4872–4887. [Google Scholar] [CrossRef]
- Zuo, L.; Li, Y.; Xia, S.; Pan, J. Blockchain-Based Collaborative Task Offloading Algorithm in Heterogeneous Edge Computing Networks. IEEE Trans. Cogn. Commun. Netw. 2025; 1, early access. [Google Scholar] [CrossRef]
- Li, M.; Yu, F.R.; Si, P.; Yang, R.; Wang, Z.; Zhang, Y. UAV-Assisted Data Transmission in Blockchain-Enabled M2M Communications with Mobile Edge Computing. IEEE Netw. 2020, 34, 242–249. [Google Scholar] [CrossRef]
- Wang, L.; Sun, X.; Jiang, R.; Jiang, W.; Zhong, Z.; Kwan Ng, D.W. Optimal Energy Efficiency for Multi-MEC and Blockchain Empowered IoT: A Deep Learning Approach. In Proceedings of the ICC 2021—IEEE International Conference on Communications, Online, 14–23 June 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Masuduzzaman, M.; Islam, A.; Sadia, K.; Shin, S.Y. UAV-based MEC-assisted automated traffic management scheme using blockchain. Future Gener. Comput. Syst. 2022, 134, 256–270. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, J.; Jiang, L.; Tan, R.; Niyato, D.; Li, Z.; Lyu, L.; Liu, Y. Privacy-Preserving Blockchain-Based Federated Learning for IoT Devices. IEEE Internet Things J. 2021, 8, 1817–1829. [Google Scholar] [CrossRef]
- Qi, J.; Liu, Y.; Ling, Y.; Xu, B.; Dong, Z.; Sun, Y. Research on an Intelligent Computing Offloading Model for the Internet of Vehicles Based on Blockchain. IEEE Trans. Netw. Serv. Manag. 2022, 19, 3908–3918. [Google Scholar] [CrossRef]
- Xu, Y.; Li, H.; Zhang, C.; Tang, Z.; Zhong, X.; Ren, J.; Jiang, H.; Zhang, Y. Blockchain-Enabled Multiple Sensitive Task-Offloading Mechanism for MEC Applications. IEEE Trans. Mob. Comput. 2025, 24, 3241–3255. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Qin, X.; Xu, X.; Zhang, P. Adaptive Resource Allocation for Blockchain-Based Federated Learning in Internet of Things. IEEE Internet Things J. 2023, 10, 10621–10635. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, Q.; Xiong, Z.; Liu, Y.; Niyato, D. Resource Optimization for Blockchain-Based Federated Learning in Mobile Edge Computing. IEEE Internet Things J. 2024, 11, 15166–15178. [Google Scholar] [CrossRef]
- He, Q.; Feng, Z.; Fang, H.; Wang, X.; Zhao, L.; Yao, Y.; Yu, K. A Blockchain-Based Scheme for Secure Data Offloading in Healthcare With Deep Reinforcement Learning. IEEE/ACM Trans. Netw. 2024, 32, 65–80. [Google Scholar] [CrossRef]
- Moghaddasi, K.; Masdari, M. Blockchain-driven optimization of IoT in mobile edge computing environment with deep reinforcement learning and multi-criteria decision-making techniques. Clust. Comput. 2024, 27, 4385–4413. [Google Scholar] [CrossRef]
- Hao, X.; Yeoh, P.L.; She, C.; Vucetic, B.; Li, Y. Secure Deep Reinforcement Learning for Dynamic Resource Allocation in Wireless MEC Networks. IEEE Trans. Commun. 2024, 72, 1414–1427. [Google Scholar] [CrossRef]
- Guo, S.; Dai, Y.; Guo, S.; Qiu, X.; Qi, F. Blockchain Meets Edge Computing: Stackelberg Game and Double Auction Based Task Offloading for Mobile Blockchain. IEEE Trans. Veh. Technol. 2020, 69, 5549–5561. [Google Scholar] [CrossRef]
- Zhang, K.; Cao, J.; Leng, S.; Shao, C.; Zhang, Y. Mining Task Offloading in Mobile Edge Computing Empowered Blockchain. In Proceedings of the 2019 IEEE International Conference on Smart Internet of Things (SmartIoT), Tianjin, China, 9–11 August 2019; pp. 234–239. [Google Scholar] [CrossRef]
- Lang, P.; Tian, D.; Duan, X.; Zhou, J.; Sheng, Z.; Leung, V.C.M. Cooperative Computation Offloading in Blockchain-Based Vehicular Edge Computing Networks. IEEE Trans. Intell. Veh. 2022, 7, 783–798. [Google Scholar] [CrossRef]
- Zhang, Z.; Hong, Z.; Chen, W.; Zheng, Z.; Chen, X. Joint Computation Offloading and Coin Loaning for Blockchain-Empowered Mobile-Edge Computing. IEEE Internet Things J. 2019, 6, 9934–9950. [Google Scholar] [CrossRef]
- Guo, W.; Chang, Z.; Guo, X.; Jayakody, D.N.K.; Ristaniemi, T. Resource Allocation for Edge Computing-Based Blockchain: A Game Theoretic Approach. In Proceedings of the 2020 IEEE International Conference on Communications Workshops (ICC Workshops), Online, 7–11 June 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Baranwal, G.; Kumar, D.; Vidyarthi, D.P. BARA: A blockchain-aided auction-based resource allocation in edge computing enabled industrial internet of things. Future Gener. Comput. Syst. 2022, 135, 333–347. [Google Scholar] [CrossRef]
- Pan, R.; Hu, Y.; Liu, C.; Li, K.; Li, K. Auction-Based Storage Resource Allocation for Blockchain. IEEE Internet Things J. 2023, 10, 21607–21614. [Google Scholar] [CrossRef]
- Sun, Z.; Sun, G.; Liu, Y.; Wang, J.; Cao, D. BARGAIN-MATCH: A Game Theoretical Approach for Resource Allocation and Task Offloading in Vehicular Edge Computing Networks. IEEE Trans. Mob. Comput. 2024, 23, 1655–1673. [Google Scholar] [CrossRef]
- Chen, Y.; Li, B.; Li, W.; Zeng, B.; Yin, J.; Deng, S. Blockchain-Based Nash Bargaining for Task Scheduling in IoT Edge Computing Environments. IEEE Internet Things J. 2024, 11, 13851–13864. [Google Scholar] [CrossRef]
- Huang, S.; Huang, H.; Gao, G.; Sun, Y.E.; Du, Y.; Wu, J. Edge Resource Pricing and Scheduling for Blockchain: A Stackelberg Game Approach. IEEE Trans. Serv. Comput. 2023, 16, 1093–1106. [Google Scholar] [CrossRef]
- Wang, D.; Jia, Y.; Liang, L.; Dong, M.; Ota, K. A Game for Task Offloading in Reputation-Based Consortium Blockchain Networks. IEEE Wirel. Commun. Lett. 2022, 11, 1508–1512. [Google Scholar] [CrossRef]
- Chen, J.; Kuang, Z.; Zhang, Y.; Lin, S.; Liu, A. Blockchain-Enabled Computing Offloading and Resource Allocation in Multi-UAVs MEC Network: A Stackelberg Game Learning Approach. IEEE Trans. Inf. Forensics Secur. 2025, 20, 3632–3645. [Google Scholar] [CrossRef]
- Liu, W.; Cao, B.; Zhang, L.; Peng, M.; Daneshmand, M. A Distributed Game Theoretic Approach for Blockchain-based Offloading Strategy. In Proceedings of the ICC 2020—2020 IEEE International Conference on Communications (ICC), Online, 7–11 June 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Pang, S.; Tang, Y.; Zhai, X.; Tong, S.; Wan, Z. Blockchain-Based UAV-Assisted Mobile Edge Computing for Dual Game Resource Allocation. Appl. Sci. 2025, 15, 4048. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y. Resource Allocation in Decentralized Vehicular Edge Computing Network. Information 2023, 14, 206. [Google Scholar] [CrossRef]
- Yang, W.; Luo, L.; Lit, X.; Zhang, Y.; Zheng, J.; Gao, Z.; Liu, K. Stackelberg Game-Based Resource Trading in DAG Blockchain-Aided MEC Network. In Proceedings of the 2025 IEEE Wireless Communications and Networking Conference (WCNC), Milan, Italy, 24–27 March 2025; pp. 1–6. [Google Scholar] [CrossRef]
- Aknan, M.; Singh, M.P.; Arya, R. AI and Blockchain Assisted Framework for Offloading and Resource Allocation in Fog Computing. J. Grid Comput. 2023, 21, 74. [Google Scholar] [CrossRef]
- Wenjing, X.; Wei, W.; Zuguang, L.; Qihui, W.; Xianbin, W. Joint task allocation and resource optimization for blockchain enabled collaborative edge computing. China Commun. 2024, 21, 218–229. [Google Scholar] [CrossRef]
- Tian, S.; Zhang, Y.; Bi, Y.; Yuan, T. Blockchain-based 6G task offloading and cooperative computing resource allocation study. J. Cloud Comput. 2024, 13, 95. [Google Scholar] [CrossRef]
- Taskou, S.K.; Rasti, M.; Nardelli, P.H.J. Energy and Cost Efficient Resource Allocation for Blockchain-Enabled NFV. IEEE Trans. Serv. Comput. 2022, 15, 2328–2341. [Google Scholar] [CrossRef]
- Liu, T.; Tang, L.; Wang, W.; Chen, Q.; Zeng, X. Digital-Twin-Assisted Task Offloading Based on Edge Collaboration in the Digital Twin Edge Network. IEEE Internet Things J. 2022, 9, 1427–1444. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, P.; Xia, X.; Kong, L.; Zeng, P.; Yu, H. Digital-Twin-Assisted Intelligent Secure Task Offloading and Caching in Blockchain-Based Vehicular Edge Computing Networks. IEEE Internet Things J. 2025, 12, 4128–4143. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, X.; Gao, H.; Xue, Y.; Qi, L.; Dou, W. BeCome: Blockchain-Enabled Computation Offloading for IoT in Mobile Edge Computing. IEEE Trans. Ind. Inform. 2020, 16, 4187–4195. [Google Scholar] [CrossRef]
- Islam, S.; Badsha, S.; Sengupta, S.; La, H.; Khalil, I.; Atiquzzaman, M. Blockchain-Enabled Intelligent Vehicular Edge Computing. IEEE Netw. 2021, 35, 125–131. [Google Scholar] [CrossRef]
- Baranwal, G.; Kumar, D.; Biswas, A.; Yadav, R. A Blockchain Framework for Efficient Resource Allocation in Edge Computing. IEEE Trans. Netw. Serv. Manag. 2024, 21, 3956–3970. [Google Scholar] [CrossRef]
- Li, S.; Ma, W. Efficient complex task offloading in blockchain-secured edge computing using a many-objective evolutionary algorithm. Future Gener. Comput. Syst. 2025, 174, 107937. [Google Scholar] [CrossRef]
- Bahrani, M.; Weinberg, S.M. Undetectable selfish mining. In Proceedings of the 25th ACM Conference on Economics and Computation, New Haven, CT, USA, 8–11 July 2024; pp. 1017–1044. [Google Scholar]
- Wang, W.; Huang, H.; Yin, Z.; Gadekallu, T.R.; Alazab, M.; Su, C. Smart contract token-based privacy-preserving access control system for industrial Internet of Things. Digit. Commun. Netw. 2023, 9, 337–346. [Google Scholar] [CrossRef]
- Bounaira, S.; Alioua, A.; Souici, I. Trust-Based Secure Task Offloading in Digital Twin Empowered Vehicular Edge Computing. In Proceedings of the 2024 6th International Conference on Pattern Analysis and Intelligent Systems (PAIS), El Oued, Algeria, 24–25 April 2024; pp. 1–8. [Google Scholar] [CrossRef]
- Sun, W.; Liu, J.; Yue, Y.; Wang, P. Joint Resource Allocation and Incentive Design for Blockchain-Based Mobile Edge Computing. IEEE Trans. Wirel. Commun. 2020, 19, 6050–6064. [Google Scholar] [CrossRef]
- Tang, W.; Gao, D.; Yu, S.; Lu, J.; Wei, Z.; Li, Z.; Chen, N. Reliable and adaptive computation offload strategy with load and cost coordination for edge computing. Pervasive Mob. Comput. 2024, 102, 101932. [Google Scholar] [CrossRef]
- Huang, Q.; Tan, M.; Tian, W. Cross-Chain Identity Authentication Method Based on Relay Chain. Information 2025, 16, 27. [Google Scholar] [CrossRef]
- Wu, X. Cross-chain workflow model based on trusted relay. In Proceedings of the ACM Turing Award Celebration Conference, Hefei, China, 30 July–1 August 2021; pp. 49–53. [Google Scholar]
- Shao, S.; Chen, F.; Xiao, X.; Gu, W.; Lu, Y.; Wang, S.; Tang, W.; Liu, S.; Wu, F.; He, J.; et al. IBE-BCIOT: An IBE based cross-chain communication mechanism of blockchain in IoT. World Wide Web 2021, 24, 1665–1690. [Google Scholar] [CrossRef]
- Li, M.; Wang, W.; Zhang, J. LB-Chain: Load-Balanced and Low-Latency Blockchain Sharding via Account Migration. IEEE Trans. Parallel Distrib. Syst. 2023, 34, 2797–2810. [Google Scholar] [CrossRef]
- Xiao, G.; Samian, N.B.; Seah, W.K.G.; Hafez Bin Ninggal, M.I.; Binti Hussin, M.; Sahni, J. Correlation and Workload-Based Transaction Allocation Algorithm for Blockchain Sharding. In Proceedings of the 2024 IEEE International Symposium on Parallel and Distributed Processing with Applications (ISPA), Kaifeng, China, 30 October–2 November 2024; pp. 1968–1973. [Google Scholar] [CrossRef]
- Zheng, J.; Xie, J.; Su, Y. Adaptive Clustering Hierarchical PBFT Algorithm for Secure and Efficient Blockchain-Based IoT Edge Computing. IEEE Sens. J. 2025, 25, 3252–3266. [Google Scholar] [CrossRef]
- Sharma, N.; Kumar, K. A Novel Latency-Aware Resource Allocation and Offloading Strategy with Improved Prioritization and DDQN for Edge-Enabled UDNs. IEEE Trans. Netw. Serv. Manag. 2024, 21, 6260–6272. [Google Scholar] [CrossRef]
- Nguyen, T.L.; Nguyen, L.; Hoang, T.; Bandara, D.; Wang, Q.; Lu, Q.; Xu, X.; Zhu, L.; Chen, S. Blockchain-empowered trustworthy data sharing: Fundamentals, applications, and challenges. ACM Comput. Surv. 2025, 57, 1–36. [Google Scholar] [CrossRef]
- Kulothungan, V. Using Blockchain Ledgers to Record AI Decisions in IoT. IoT 2025, 6, 37. [Google Scholar] [CrossRef]
Reference | Main Topic | Task Placement | Resource Management |
---|---|---|---|
[21] | Blockchain-based offloading methods for various MEC settings | ✓ | ✗ |
[14] | Blockchain-empowered vehicular network | ✓ | ✗ |
[19] | Blockchain resource allocation in cloud computing and MEC | ✗ | ✓ |
[22] | Computational resource allocation in IoT-enabled vehicular MEC | ✗ | ✓ |
[23] | Blockchain and MEC integration for IoT | ✗ | ✓ |
[10] | Security and forensics management in MEC for IoT | ✗ | ✓ |
Our work | Blockchain-based task placement and resource management in MEC | ✓ | ✓ |
RQ | Research Question | Goal |
---|---|---|
RQ1 | How does the blockchain enhance task offloading and resource management in MEC systems? | To understand the role of the blockchain in improving security, decentralization, and trust in task offloading and resource allocation at the network edge. |
RQ2 | What are the existing frameworks and techniques designed for blockchain-enabled task offloading and resource management in MEC? | To categorize and analyze the methods, techniques, and solutions derived from the literature. |
RQ3 | What are the current limitations, open challenges, and future research opportunities regarding combining the blockchain with MEC for task placement and resource management? | To identify gaps in the current research and outline potential directions for future studies. |
Inclusion Criteria | |
---|---|
IC1 | The study presents or discusses opportunities or challenges in running the blockchain in edge computing. |
IC2 | The study proposes or evaluates blockchain-based solutions in the context of MEC. |
IC3 | The study addresses task placement, resource management, or both in blockchain-enabled MEC environments. |
Exclusion Criteria | |
---|---|
EC1 | The study is a previous version of a more complete study on the same research. |
EC2 | The study is unrelated to the blockchain in MEC. |
EC3 | The study is not written in English. |
Characteristic | Conventional Edge Computing | Blockchain-Based Edge Computing |
---|---|---|
Control and coordination | Centralized orchestration by cloud or edge servers | Decentralized coordination via consensus and smart contracts |
Trust model | Relies on a central trusted entity for validation | Trust is distributed and enforced using cryptographic consensus |
Security | Vulnerable to tampering and single-point failures | High tamper resistance and security via the distributed ledger |
Transparency | Limited visibility of system operations | Transparent, immutable logs of all operations |
Fault tolerance | Low fault tolerance due to central dependencies | High fault tolerance using distributed nodes |
Incentivization | No built-in incentives for collaboration | Token-based rewards for participation and validation |
Scalability challenges | Limited by centralized resources | Scalability supported by distributed participation |
Application suitability | Best for trusted, homogeneous environments | Ideal for untrusted, multiparty, dynamic environments |
Reference | Technique | Contributions | Evaluation Parameters |
---|---|---|---|
[42] | Multiagent DRL | Optimizes task offloading efficiency in blockchain-enabled MEC | Reward, delay, energy, privacy |
[43] | DL | Reduces computational costs and data propagation delay in mobile environments | Processing time, execution, transaction rate |
[44] | Multiagent DRL | Offers cooperative task offloading and block mining in blockchain-based MEC | Utility, latency, bandwidth |
[45] | Hybrid DRL | Optimizes task offloading and energy efficiency in blockchain-enabled MEC | Reward, offloading proportion, delay, energy |
[46] | FL, DRL | Minimizes latency in blockchain-based FL | Accuracy, loss, reward, latency |
[47] | FL | Enhances security and resource optimization in mobile cloud computing | Service overhead, boot time, CPU utilization, failure rate |
[48] | FL, DDPG | Optimizes 5G resource utilization and task offloading in IoT systems | Reward |
[55] | DRL | Secures MEC task offloading with blockchain and DRL | Cost, memory usage, throughput, latency, CPU utilization |
[56] | CRL | Optimizes task offloading efficiency in heterogeneous edge networks | Reward, energy, time |
[57] | DRL | Increases computation and throughput of blockchain systems | System rewards |
[58] | DNN | Optimizes IoT blockchain networks with MEC and DNNs | Energy, loss |
[59] | DL | Offers deep learning for vehicle detection with a two-phase authentication mechanism for secure device verification | Time, energy, throughput, successful transactions |
[60] | FL | Provides a blockchain-enabled FL system with a reputation mechanism for smart home manufacturers | Test accuracy, reward value, reputation value |
[61] | DDPG | Offers an intelligent computing offloading model for the Internet of Vehicles | Loss, reward, cost, success rate |
[62] | Multiarmed bandit RL | Optimizes task offloading policies and resource allocation in blockchain-enabled MEC systems | Delay, cost |
[49] | DL | Maximizes the revenue of the MEC service provider in mobile blockchain networks | Revenue, probability |
[50] | RL | Enhances secure and intelligent resource allocation in edge-centric IoT | Loss, reward, delay, task drop rate |
[51] | DQN | Maximizes system rewards in blockchain-enabled M2M communications | Reward, latency |
[53] | FL | Minimizes computing costs in IoMT with encrypted gradient sharing and secure transaction auditing | Accuracy, time, memory usage |
[54] | FL, DRL | Enhances resource utilization and quality of service in radio-access network slicing | Loss, reward, time |
[63] | FL, DRL, MDP | Enhances trust and energy-efficient model training in IoT-based FL | Accuracy, reward, loss, energy |
[64] | FL, ADMM | Minimizes service cost in the MEC-enabled blockchain | Energy, bandwidth, latency |
[65] | A3C, MDP | Minimizes offloading costs in healthcare systems for secure and efficient medical resource allocation | Delay, utility, energy |
[66] | DDQN, MDP | Optimizes resource allocation for task offloading in IoT-based MEC systems | Reward, energy, latency |
[67] | DRL, CMDP | Enhances data security and resource utilization in decentralized MEC networks | Latency, probability |
Reference | Technique | Contributions | Evaluation Parameters |
---|---|---|---|
[68] | Double auction, Stackelberg | Optimizes blockchain task offloading and maximizes mining utility in mobile IoT networks | Delay, miner density, transaction rate |
[69] | Stackelberg | Optimizes blockchain mining task offloading in MEC, accounting for device-specific risk–reward preferences | Utility |
[70] | Cooperative game, Nash equilibrium | Offers blockchain-based secure data sharing in vehicular MEC | Latency, probability |
[71] | Nash equilibrium | Minimizes the total cost of mobile devices in blockchain-empowered MEC | Cost, time, iterations |
[76] | Nash bargaining | Optimizes secure and tamper-resistant task scheduling framework for IoT edge environments | Reward, price, scheduling time, bargaining time, CPU memory usage |
[77] | Stackelberg | Maximizes utility for blockchain miners and service providers in a realistic edge-assisted setting | Price, utility, computing demand |
[78] | Stackelberg | Optimizes cost efficiency and node utilities through a reputation-based incentive mechanism in consortium blockchain-enabled edge networks | Utility, cost, reputation |
[79] | Stackelberg | Minimizes energy consumption and delay in blockchain-enabled multi-UAV MEC networks | Delay, energy |
[80] | Stackelberg | Maximizes the utilities of blockchain users and miners in MEC-enabled wireless blockchain networks | Price, transaction rate, utility |
[72] | Stackelberg game | Optimizes incentive mechanisms in edge-assisted blockchain networks | Profit |
[73] | Auction theory | Enhances secure and fair resource allocation in IIoT MEC | Time, utility, pricing |
[74] | Second-price auction | Reduces blockchain storage overhead in resource-constrained edge environments | Benefit |
[75] | Bargaining theory | Improves resource utilization and service satisfaction in VEC networks | Utility, time |
[81] | Stackelberg game, auction algorithm | Optimizes resource allocation in dynamic UAV-assisted mobile MEC environments | Utility, latency, demand |
[82] | Stackelberg game | Optimizes resource allocation and enhances security in MEC-enabled vehicular networks | Utility, power |
[83] | Stackelberg game | Maximizes utility and enhances transaction security in blockchain-enabled mobile MEC networks | Price, utility |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rashid, S.M.; Aliyu, I.; Isah, A.; Hahn, M.; Kim, J. Blockchain-Based Task Placement and Resource Management in Edge Computing: A Survey. Electronics 2025, 14, 3398. https://doi.org/10.3390/electronics14173398
Rashid SM, Aliyu I, Isah A, Hahn M, Kim J. Blockchain-Based Task Placement and Resource Management in Edge Computing: A Survey. Electronics. 2025; 14(17):3398. https://doi.org/10.3390/electronics14173398
Chicago/Turabian StyleRashid, Sulaiman Muhammad, Ibrahim Aliyu, Abubakar Isah, Minsoo Hahn, and Jinsul Kim. 2025. "Blockchain-Based Task Placement and Resource Management in Edge Computing: A Survey" Electronics 14, no. 17: 3398. https://doi.org/10.3390/electronics14173398
APA StyleRashid, S. M., Aliyu, I., Isah, A., Hahn, M., & Kim, J. (2025). Blockchain-Based Task Placement and Resource Management in Edge Computing: A Survey. Electronics, 14(17), 3398. https://doi.org/10.3390/electronics14173398