Coupled Split-Ring Resonators for Isolation Improvement in a 1 × 2 Microstrip Patch Antenna Array
Abstract
1. Introduction
2. Antenna Structure and Design Considerations
3. SRR Characterization and Antenna Performance Analysis
4. Experimental Validation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Odabasi, H.; Salimitorkamani, M.; Turan, G. Mutual Coupling Reduction Between Closely Placed Patch Antennas Using Complementary U-Shaped Polarization Converter. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 2710–2714. [Google Scholar] [CrossRef]
- Habashi, A.; Nourinia, J.; Ghobadi, C. Mutual Coupling Reduction Between Very Closely Spaced Patch Antennas Using Low-Profile Folded Split-Ring Resonators (FSRRs). IEEE Antennas Wirel. Propag. Lett. 2011, 10, 862–865. [Google Scholar] [CrossRef]
- Elahi, M.; Altaf, A.; Almajali, E.; Yousaf, J. Mutual Coupling Reduction in Closely Spaced MIMO Dielectric Resonator Antenna in H-Plane Using Closed Metallic Loop. IEEE Access 2022, 10, 71576–71583. [Google Scholar] [CrossRef]
- Vishvaksenan, K.S.; Mithra, K.; Kalaiarasan, R.; Raj, K.S. Mutual Coupling Reduction in Microstrip Patch Antenna Arrays Using Parallel Coupled-Line Resonators. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2146–2149. [Google Scholar] [CrossRef]
- Nikolic, M.; Djordjevic, A.; Nehorai, A. Microstrip antennas with suppressed radiation in horizontal directions and reduced coupling. IEEE Trans. Antennas Propag. 2005, 53, 3469–3476. [Google Scholar] [CrossRef]
- Zhang, J.; Akinsolu, M.O.; Liu, B.; Vandenbosch, G.A.E. Automatic AI-Driven Design of Mutual Coupling Reducing Topologies for Frequency Reconfigurable Antenna Arrays. IEEE Trans. Antennas Propag. 2021, 69, 1831–1836. [Google Scholar] [CrossRef]
- Das, P.; Mandal, K. Polarization Converter Surface Integrated MIMO Antenna for Simultaneous Reduction of RCS and Mutual Coupling. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 1782–1786. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Y.; Wei, K.; Zhang, Z. Dual-Band Decoupling for Two Back-to-Back PIFAs. IEEE Trans. Antennas Propag. 2023, 71, 2802–2807. [Google Scholar] [CrossRef]
- Xiao, S.; Tang, M.-C.; Bai, Y.-Y.; Gao, S.; Wang, B.-Z. Mutual coupling suppression in microstrip array using defected ground structure. IET Microwaves Antennas Propag. 2011, 5. [Google Scholar] [CrossRef]
- Liu, R.; An, X.; Zheng, H.; Wang, M.; Gao, Z.; Li, E. Neutralization Line Decoupling Tri-Band Multiple-Input Multiple-Output Antenna Design. IEEE Access 2020, 8, 27018–27026. [Google Scholar] [CrossRef]
- Qamar, Z.; Riaz, L.; Chongcheawchamnan, M.; Khan, S.A.; Shafique, M.F. Slot combined complementary split ring resonatorsfor mutual coupling suppression in microstripphased arrays. IET Microwaves Antennas Propag. 2014, 8, 1261–1267. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Khalily, M.; Virdee, B.S.; See, C.H.; Abd-Alhameed, R.A.; Limiti, E. Mutual Coupling Suppression Between Two Closely Placed Microstrip Patches Using EM-Bandgap Metamaterial Fractal Loading. IEEE Access 2019, 7, 23606–23614. [Google Scholar] [CrossRef]
- Alsath, M.G.N.; Kanagasabai, M.; Balasubramanian, B. Implementation of Slotted Meander-Line Resonators for Isolation Enhancement in Microstrip Patch Antenna Arrays. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 15–18. [Google Scholar] [CrossRef]
- Ghosh, J.; Ghosal, S.; Mitra, D.; Chaudhuri, S.R. Mutual coupling reduction between closely placed microstrip patch antenna using meander line resonator. Prog. Electromagn. Res. Lett. 2016, 59, 115–122. [Google Scholar] [CrossRef]
- Faraz, F.; Chen, X.; Li, Q.; Tang, J.; Li, J.; Khan, T.; Zhang, X. Mutual Coupling Reduction of Dual Polarized Low Profile MIMO Antenna Using Decoupling Resonators. Appl. Comput. Electromagn. Soc. J. 2020, 35, 38–43. [Google Scholar]
- Benny, S.; Sahoo, S. Aperture Fed Microstrip Dual Polarization Wide Scan Phased Array Antenna with Mutual Coupling Reduction. IEEE Access 2024, 12, 16397–16407. [Google Scholar] [CrossRef]
- Bait-Suwailam, M.M.; Siddiqui, O.F.; Ramahi, O.M. Mutual Coupling Reduction Between Microstrip Patch Antennas Using Slotted-Complementary Split-Ring Resonators. IEEE Antennas Wirel. Propag. Lett. 2010, 9, 876–878. [Google Scholar] [CrossRef]
- Kedze, K.E.; Zhou, W.; Javanbakht, N.; Xiao, G.; Shaker, J.; Amaya, R.E. Implementing Complementary Split Ring Resonators for Mutual Coupling Suppression in Dual Differentially-Fed Microstrip Patch Array Antenna. In Proceedings of the 2022 IEEE International Symposium on Phased Array Systems & Technology (PAST), Waltham, MA, USA, 11–14 October 2022; pp. 1–2. [Google Scholar] [CrossRef]
- Zhou, W.; Javanbakht, N.; Abdullah, S.; Labossiere, J.; Hyland, J.; Amaya, R.E. Dual Differential-Fed 2×2 Phased Array with Reconfigurable Polarization and Radiation Pattern Diversity. In Proceedings of the 2021 IEEE 19th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), Winnipeg, MB, Canada, 8–11 August 2021; pp. 1–2. [Google Scholar] [CrossRef]
- Zhou, W.; Abdullah, S.; Labossiere, J.; Javanbakht, N.; Shaker, J.; Xiao, G.; Amaya, R.E. Impact of Amplitude and Phase Imbalance on Dual Differential Fed Patch Antenna With High Isolation. IEEE Open J. Antennas Propag. 2022, 3, 1227–1233. [Google Scholar] [CrossRef]
- Pendry, J.; Holden, A.; Robbins, D.; Stewart, W. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 1999, 47, 2075–2084. [Google Scholar] [CrossRef]
- Garcia-Garcia, J.; Martin, F.; Falcone, F.; Bonache, J.; Baena, J.; Gil, I.; Amat, E.; Lopetegi, T.; Laso, M.; Iturmendi, J.; et al. Microwave filters with improved stopband based on sub-wavelength resonators. IEEE Trans. Microw. Theory Tech. 2005, 53, 1997–2006. [Google Scholar] [CrossRef]
- Falcone, F.; Lopetegi, T.; Baena, J.; Marques, R.; Martin, F.; Sorolla, M. Effective negative-/spl epsiv/ stopband microstrip lines based on complementary split ring resonators. IEEE Microw. Wirel. Components Lett. 2004, 14, 280–282. [Google Scholar] [CrossRef]
- Marques, R.; Mesa, F.; Martel, J.; Medina, F. Comparative analysis of edge- and broadside- coupled split ring resonators for metamaterial design—Theory and experiments. IEEE Trans. Antennas Propag. 2003, 51, 2572–2581. [Google Scholar] [CrossRef]
- Smith, D.R.; Padilla, W.J.; Vier, D.C.; Nemat-Nasser, S.C.; Schultz, S. Composite Medium with Simultaneously Negative Permeability and Permittivity. Phys. Rev. Lett. 2000, 84, 4184–4187. [Google Scholar] [CrossRef]
- Sarin, V.; Labate, G.; Raj, R.K.; Kesavath, V. A Transparent Metasurface Supporting Pseudoanapole by Mirroring Split-Ring Resonators. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 2782–2786. [Google Scholar] [CrossRef]
- Selvaraju, R.; Jamaluddin, M.H.; Kamarudin, M.R.; Nasir, J.; Dahri, M.H. Complementary split ring resonator for isolation enhancement in 5g communication antenna array. Prog. Electromagn. Res. C 2018, 83, 217–228. [Google Scholar] [CrossRef]
Ref. | Method | Freq (GHz) | BW (GHz) | Coupling Plane | Max. Isolation Improvement (dB) |
---|---|---|---|---|---|
[1] | U-shaped resonator | 5.0 | 4.95–5.15 | E | 14 |
[11] | SCCSRR | 3.7 | 3.65–3.75 | E | 19 |
[13] | Slotted meander line resonator | 4.8 | 4.75–4.95 | H | 16 |
[14] | Meander line resonator | 2.8 | 2.70–2.80 | H | 10 |
[15] | Decoupling resonator | 3.5 | 3.47–5.52 | H | 16 |
[16] | Planar resonator | 2.93 | 2.77–3.10 | - | 7 |
[17] | Slotted CSRR | 5.0 | 4.95–5.05 | E | 10 |
Prop. | Coupled SRR | 9.36 | 9.27–9.46 | E/H | 12/6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kedze, K.E.; Zhou, W.; Almajali, E.; Jamshidi-Zarmehri, H.; Javanbakht, N.; Xiao, G.; Shaker, J.; Amaya, R.E. Coupled Split-Ring Resonators for Isolation Improvement in a 1 × 2 Microstrip Patch Antenna Array. Electronics 2025, 14, 3340. https://doi.org/10.3390/electronics14173340
Kedze KE, Zhou W, Almajali E, Jamshidi-Zarmehri H, Javanbakht N, Xiao G, Shaker J, Amaya RE. Coupled Split-Ring Resonators for Isolation Improvement in a 1 × 2 Microstrip Patch Antenna Array. Electronics. 2025; 14(17):3340. https://doi.org/10.3390/electronics14173340
Chicago/Turabian StyleKedze, Kam Eucharist, Wenyu Zhou, Eqab Almajali, Hojjat Jamshidi-Zarmehri, Nima Javanbakht, Gaozhi (George) Xiao, Jafer Shaker, and Rony E. Amaya. 2025. "Coupled Split-Ring Resonators for Isolation Improvement in a 1 × 2 Microstrip Patch Antenna Array" Electronics 14, no. 17: 3340. https://doi.org/10.3390/electronics14173340
APA StyleKedze, K. E., Zhou, W., Almajali, E., Jamshidi-Zarmehri, H., Javanbakht, N., Xiao, G., Shaker, J., & Amaya, R. E. (2025). Coupled Split-Ring Resonators for Isolation Improvement in a 1 × 2 Microstrip Patch Antenna Array. Electronics, 14(17), 3340. https://doi.org/10.3390/electronics14173340