Correction: Badri et al. An Efficient and Secure Model Using Adaptive Optimal Deep Learning for Task Scheduling in Cloud Computing. Electronics 2023, 12, 1441
- 1.
- Praveenchandar, J.; Tamilarasi, A. Dynamic resource allocation with optimized task scheduling and improved power management in cloud computing. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 4147–4159.
- 6.
- Shahzad, F.; Javed, A.R.; Zikria, Y.B.; Rehman, S.; Jalil, Z. Future smart cities: Requirements, emerging technologies, applications, challenges, and future aspects. TechRxiv 2021.
- 15.
- Su, Y.; Bai, Z.; Xie, D. The optimizing resource allocation and task scheduling based on cloud computing and Ant Colony Optimization Algorithm. J. Ambient. Intell. Humaniz. Comput. 2021, 1–9.
- 21.
- Kalaichelvi, V.; Meenakshi, P.; Vimala Devi, P.; Manikandan, H.; Venkateswari, P.; Swaminathan, S. A stable image steganography: A novel approach based on modified RSA algorithm and 2–4 least significant bit (LSB) technique. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 7235–7243.
Reference
- Badri, S.; Alghazzawi, D.M.; Hasan, S.H.; Alfayez, F.; Hasan, S.H.; Rahman, M.; Bhatia, S. An Efficient and Secure Model Using Adaptive Optimal Deep Learning for Task Scheduling in Cloud Computing. Electronics 2023, 12, 1441. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badri, S.; Alghazzawi, D.M.; Hasan, S.H.; Alfayez, F.; Hasan, S.H.; Rahman, M.; Bhatia, S. Correction: Badri et al. An Efficient and Secure Model Using Adaptive Optimal Deep Learning for Task Scheduling in Cloud Computing. Electronics 2023, 12, 1441. Electronics 2025, 14, 3339. https://doi.org/10.3390/electronics14173339
Badri S, Alghazzawi DM, Hasan SH, Alfayez F, Hasan SH, Rahman M, Bhatia S. Correction: Badri et al. An Efficient and Secure Model Using Adaptive Optimal Deep Learning for Task Scheduling in Cloud Computing. Electronics 2023, 12, 1441. Electronics. 2025; 14(17):3339. https://doi.org/10.3390/electronics14173339
Chicago/Turabian StyleBadri, Sahar, Daniyal M. Alghazzawi, Syed Humaid Hasan, Fayez Alfayez, Syed Hamid Hasan, Monawar Rahman, and Surbhi Bhatia. 2025. "Correction: Badri et al. An Efficient and Secure Model Using Adaptive Optimal Deep Learning for Task Scheduling in Cloud Computing. Electronics 2023, 12, 1441" Electronics 14, no. 17: 3339. https://doi.org/10.3390/electronics14173339
APA StyleBadri, S., Alghazzawi, D. M., Hasan, S. H., Alfayez, F., Hasan, S. H., Rahman, M., & Bhatia, S. (2025). Correction: Badri et al. An Efficient and Secure Model Using Adaptive Optimal Deep Learning for Task Scheduling in Cloud Computing. Electronics 2023, 12, 1441. Electronics, 14(17), 3339. https://doi.org/10.3390/electronics14173339