Design and Analysis of 3–12 GHz UWB Flat Gain LNA in 0.15 µm GaAs pHEMT Technology
Abstract
1. Introduction
2. Circuit Design
2.1. Process Technology and Analysis
2.2. Circuit Design and Calculations
2.3. Parametric Analysis
3. Measurement Results
4. Discussion and Comparison
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, Y.S.; Liao, K.N. A concurrent multiband InGaP-GaAs HBT LNA for 1.8/1.9-GHz GSM, 2.4/4.9/5.2/5.7-GHz WLAN, and 5–7-GHz ultra-wideband (UWB) system applications. Microw. Opt. Technol. Lett. 2006, 48, 110–114. [Google Scholar] [CrossRef]
- Abidi, A.; Leete, J. De-embedding the noise figure of differential amplifiers. IEEE J. Solid-State Circuits 1999, 34, 882–885. [Google Scholar] [CrossRef]
- He, L.; Hu, J.; Gao, B. A 6.5–16.5 GHz low noise amplifier based on GaAs pHEMT. In Proceedings of the 2021 IEEE 3rd International Conference on Circuits and Systems (ICCS), Chengdu, China, 29–31 October 2021; pp. 144–149. [Google Scholar]
- Sakalas, M.; Sakalas, P. Design of a wideband, 4–42.5 GHz low noise amplifier in 0.25 μm GaAs pHEMT technology. In Proceedings of the 2020 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS), Monterey, CA, USA, 16–19 November 2020; IEEE: New York, NY, USA, 2020; pp. 1–4. [Google Scholar]
- Wang, Z.; Hou, D.; Chen, J.; Chen, Z.; Yan, P.; Zhang, L.; Hong, W. A Q-band self-biased LNA in 0.1-μm GaAs pHEMT technology. In Proceedings of the 2019 12th UK-Europe-China Workshop on Millimeter Waves and Terahertz Technologies (UCMMT), London, UK, 20–22 August 2019; IEEE: New York, NY, USA, 2019; pp. 1–4. [Google Scholar]
- Lee, L.Y.; Wang, Y.; Wang, H. A 25–31 GHz LNA in GaAs 0.15-μm pHEMT. In Proceedings of the 2021 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Hualien, Taiwan, 25–27 August 2021; IEEE: New York, NY, USA, 2021; pp. 1–3. [Google Scholar]
- Hsu, M.T.; Chih, T.Y.; Li, G.R. 1.5 V 5 GHz low noise amplifier with source degeneration. In Proceedings of the 2006 Asia-Pacific Microwave Conference, Yokohama, Japan, 12–15 December 2006; IEEE: New York, NY, USA, 2006; pp. 405–408. [Google Scholar]
- Wei, D.; Zhang, J.; Wu, T.; Ma, S.; Ren, J. A 22–40.5 GHz UWB LNA design in 0.15 µm GaAs. In Proceedings of the 2019 IEEE 13th International Conference on ASIC (ASICON), Chongqing, China, 29 October–1 November 2019; IEEE: New York, NY, USA, 2019; pp. 1–4. [Google Scholar]
- Wang, X.; Men, T.; Cheng, B. A 6–18 GHz low noise amplifier with 19 dBm OP1dB and 2.6 ± 0.3 dB NF in 0.15 μm GaAs process. Electronics 2025, 14, 1600. [Google Scholar] [CrossRef]
- Huang, W.C.; Chiong, C.C.; Wang, H. A fully-integrated S band differential LNA in 0.15-μm GaAs pHEMT for radio astronomical receiver. In Proceedings of the 2018 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Melbourne, Australia, 15–17 August 2018; pp. 1–3. [Google Scholar]
- Chou, C.F.; Chang, Y.C.; Wang, H.; Chiog, C.C. High gain fully on-chip LNAs with wideband input matching in 0.15-μm GaAs pHEMT for radio astronomical telescope. In Proceedings of the 2015 European Microwave Conference (EuMC), Paris, France, 7–10 September 2015; pp. 235–238. [Google Scholar]
- Akter, M.S.; Sehgal, R.; Bult, K. A resistive degeneration technique for linearizing open-loop amplifiers. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 2322–2326. [Google Scholar] [CrossRef]
- Abdalrahman, F.; Longhi, P.E.; Ciccognani, W.; Colangeli, S.; Serino, A.; Limiti, E. Design methodology and robustness analysis of a 13–15 GHz three stage low noise amplifier in pHEMT GaAs technology. Electronics 2025, 14, 2206. [Google Scholar] [CrossRef]
- Yang, L.Y.; Chen, H.S.; Chen, Y.J.E. A 2.4 GHz fully integrated cascode-cascade CMOS Doherty power amplifier. IEEE Microw. Wirel. Compon. Lett. 2008, 18, 197–199. [Google Scholar] [CrossRef]
- Qin, P.; Xue, Q. Design of wideband LNA employing cascaded complimentary common gate and common source stages. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 587–589. [Google Scholar] [CrossRef]
- Jeong, G.; Joo, T.; Hong, S. A highly linear and efficient CMOS power amplifier with cascode–cascade configuration. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 596–598. [Google Scholar] [CrossRef]
- Pozar, D.M. Microwave Engineering: Theory and Techniques; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Riad, T.; Jing, Q. A nonlinear s parameters behavioral model for RF LNAs. In Proceedings of the 2nd Asia Symposium on Quality Electronic Design (ASQED), Penang, Malaysia, 3–4 August 2010; pp. 106–111. [Google Scholar]
- Tsai, M.D.; Deng, K.L.; Wang, H.; Chen, C.H.; Chang, C.S.; Chern, J. A miniature 25-GHz 9-dB CMOS cascaded single-stage distributed amplifier. IEEE Microw. Wirel. Compon. Lett. 2004, 14, 554–556. [Google Scholar] [CrossRef]
- Wang, X.; Weber, R. Design of a CMOS low noise amplifier (LNA) at 5.8 GHz and its sensitivity analysis. In Proceedings of the 11th NASA Symbosium, Chicago, IL, USA, 9–11 July 2003; pp. 2524–2529. [Google Scholar]
- Zhang, H.; Fan, X.; Sinencio, E.S. A low power, linearized, ultra-wideband LNA design technique. IEEE J. Solid-State Circuits 2009, 44, 320–330. [Google Scholar] [CrossRef]
- Razavi, B.; Behzad, R. RF Microelectronics; Prentice Hall: New York, NY, USA, 2012; Volume 2. [Google Scholar]
- Sreekumar, R.; Nasrollahpour, M.; Hamedi-hagh, S. Cascode stage based LNA for bluetooth applications in 45 nm CMOS technology. In Proceedings of the 2017 New Generation of CAS (NGCAS), Genova, Italy, 7–9 September 2017; pp. 145–148. [Google Scholar]
- Gray, P.R.; Hurst, P.J.; Lewis, S.H.; Meyer, R.G. Analysis and Design of Analog Integrated Circuits; John Wiley & Sons: Hoboken, NJ, USA, 2024. [Google Scholar]
- Dilshad, U.; Chen, C.; Altaf, A.; Miao, J. An ultra broadband K/Ka-band (17–40 GHz) LNA MMIC in 0.15 μm GaAs pHEMT. In Proceedings of the 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Guangzhou, China, 19–22 May 2019; pp. 1–3. [Google Scholar]
- Gonzalez, G. Microwave Transistor Amplifiers: Analysis and Design; Prentice Hall: Englewood Cliffs, NJ, USA, 1997; Volume 2. [Google Scholar]
- Chen, W.H.; Liu, G.; Zdravko, B.; Niknejad, A.M. A highly linear broadband CMOS LNA employing noise and distortion cancellation. IEEE J. Solid-State Circuits 2008, 43, 1164–1176. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, J.; Luo, H.; Gao, S.P.; Guo, Y. A compact 1.0–12.5-GHz LNA MMIC with 1.5-dB NF based on multiple resistive feedback in 0.15-μm GaAs pHEMT technology. IEEE Trans. Circuits Syst. I Regul. Pap. 2023, 70, 1450–1462. [Google Scholar] [CrossRef]
- de Hek, P.; Van Caekenberghe, K.; van Dijk, R. A 3–14 GHz pseudo-differential distributed low noise amplifier. In Proceedings of the 5th European Microwave Integrated Circuits Conference, Paris, France, 27–28 September 2010; pp. 337–340. [Google Scholar]
- Zhang, H.; Qian, G.; Zhong, W.; Liu, C. A 3–15 GHz ultra-wideband 0.15-μm pHEMT low noise amplifier design. In Proceedings of the 2016 IEEE International Conference on Communication Systems (ICCS), Shenzhen, China, 14–16 December 2016; pp. 1–4. [Google Scholar]
- Fan, T.H.; Chiong, C.C.; Wang, H. A 3.3 to 11.3 GHz differential LNA with slight imbalance active balun in 0.15-μm GaAs pHEMT process for radio astronomical receiver. In Proceedings of the 2021 16th European Microwave Integrated Circuits Conference (EuMIC), London, UK, 3–4 April 2022; pp. 257–260. [Google Scholar]
- Zhang, X.; Wang, K.; Liang, X.; Yan, Y. A 6–21-GHz wideband novel current reuse LNA with simultaneous noise and input matching. IEEE Microw. Wirel. Technol. Lett. 2023, 33, 1167–1170. [Google Scholar] [CrossRef]
- Hu, J.; Ma, K.; Mou, S.; Meng, F. A seven octave broadband LNA MMIC using bandwidth extension techniques and improved active load. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 65, 3150–3161. [Google Scholar] [CrossRef]
- Hu, J.; Ma, K. A 1–40-GHz LNA MMIC using multiple bandwidth extension techniques. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 336–338. [Google Scholar] [CrossRef]
- Yao, J.; Sun, X.; Lin, B. 1.5–2.7 GHz ultra low noise bypass LNA. In Proceedings of the 2014 IEEE MTT-S International Microwave Symposium (IMS2014), Tampa, FL, USA, 1–6 June 2014; pp. 1–3. [Google Scholar]
- Li, Z.; Yan, P.; Chen, J.; Hou, D. A wide bandwidth W band LNA in GaAs 0.1 μm pHEMT technology. In Proceedings of the 2020 IEEE MTT-S International Wireless Symposium (IWS), Shanghai, China, 20–23 September 2020; pp. 1–3. [Google Scholar]
Parameter | Value | Parameter | Value | Parameter | Value |
---|---|---|---|---|---|
0.37 nH | 4.16 pF | 60 | |||
1.2 nH | 4.16 pF | 300 | |||
6.7 nH | 70 | 1680 | |||
0.9 nH | 5 | (m) CPW | |||
1.2 nH | 92 | (m) CPW | |||
4.16 pF | 5 | (m) CPW |
Ref. | Tech. GaAs pHEMT | [GHz] | frac [%] | Gain [dB] | Pdc [mW] | [dB] | Chip Area [mm2] | FOM [%GHz/ mW] | GF |
---|---|---|---|---|---|---|---|---|---|
[28] | 0.15 µm | 1–12.5 | 165 | 23 | 87.5 | 1.25–2.5 | 3 | 194 | 0.033 |
[29] | 0.15 µm | 3–14 | 122 | 18 | 600 | <2.3 | 7.44 | 17.5 | 0.033 |
[30] | 0.15 µm | 3–15 | 133 | 28 | 200 | 2.5 | 2 | 89 | 0.047 |
[31] | 0.15 µm | 3.3–11.3 | 109 | 28.5 | 85 | 5–2 | 6 | 78 | 0.114 |
[32] | 0.15 µm | 6–21 | 111 | 23 | 135 | 1.03–1.76 | 1.04 | 161 | 0.030 |
[33] | 0.15 µm | 0.1–20 | 198 | 28 | 505 | 3.1–5.8 | 1.53 | 38 | 0.046 |
[34] | 0.15 µm | 1–40 | 170.2 | 26 | 207 | 2.8–3.9 | 0.06 | 239 | 0.055 |
[35] | 0.25 µm | 1.5–2.7 | 57 | 20 | 300 | 0.4–0.8 | 9 | 5.7 | 0.059 |
[36] | 0.1 µm | 73–101 | 32.2 | 23 | 96 | 5.5–5.7 | 0.98 | 38 | 0.020 |
This work | 0.15 µm | 3-12 | 120 | 18 | 270 | 2.5-4.3 | 3 | 17 | 0.025 |
This work * | 0.15 µm | 1.6-14 | 158 | 18 | 270 | 2.9–4.9 | 3 | 54 | 0.040 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haykir Ergin, T.; Tuncel, U.; Topaloglu, S.; Ülkü, H.A. Design and Analysis of 3–12 GHz UWB Flat Gain LNA in 0.15 µm GaAs pHEMT Technology. Electronics 2025, 14, 3272. https://doi.org/10.3390/electronics14163272
Haykir Ergin T, Tuncel U, Topaloglu S, Ülkü HA. Design and Analysis of 3–12 GHz UWB Flat Gain LNA in 0.15 µm GaAs pHEMT Technology. Electronics. 2025; 14(16):3272. https://doi.org/10.3390/electronics14163272
Chicago/Turabian StyleHaykir Ergin, Tugba, Utku Tuncel, Serkan Topaloglu, and Hüseyin Arda Ülkü. 2025. "Design and Analysis of 3–12 GHz UWB Flat Gain LNA in 0.15 µm GaAs pHEMT Technology" Electronics 14, no. 16: 3272. https://doi.org/10.3390/electronics14163272
APA StyleHaykir Ergin, T., Tuncel, U., Topaloglu, S., & Ülkü, H. A. (2025). Design and Analysis of 3–12 GHz UWB Flat Gain LNA in 0.15 µm GaAs pHEMT Technology. Electronics, 14(16), 3272. https://doi.org/10.3390/electronics14163272