Research on Optimal Scheduling of the Combined Cooling, Heating, and Power Microgrid Based on Improved Gold Rush Optimization Algorithm
Abstract
1. Introduction
- It establishes a CCHP microgrid optimization scheduling model based on the IGRO algorithm.
- With the aim of addressing the shortcomings of poor convergence and susceptibility to becoming trapped in local optima, the initialization mechanism and search strategies of the algorithm are improved.
- Several benchmark functions are employed for simulation and comparative analysis to verify the superior convergence accuracy of the proposed IGRO algorithm compared to other algorithms.
- The IGRO algorithm is applied to optimize scheduling in a microgrid, demonstrating its effectiveness in addressing the scheduling optimization problem when compared to other algorithms.
2. Mathematical Model of CCHP System
2.1. Mathematical Model of Gas Turbine
2.2. Mathematical Model of Gas Boiler
2.3. Mathematical Model of Waste Heat Boiler
2.4. Mathematical Model of Electric Boiler
2.5. Mathematical Model of Electric Refrigeration
2.6. Mathematical Model of Absorption Chiller
2.7. Mathematical Model of Energy Storage Devices
2.8. Power Constraints
2.8.1. Constraints of Energy Balance
2.8.2. Constraints of Power Grid
2.8.3. Constraints of Equipment
2.9. Objective Function
3. Improvements to the GRO Algorithm
3.1. Gold Rush Algorithm
3.1.1. Migration of Prospectors
3.1.2. Gold Mining
3.1.3. Collaboration Between Prospectors
3.2. Improved Gold Rush Algorithm
3.2.1. Halton Sequence Initialization
3.2.2. Dynamic Adaptive Weighting Factor
3.2.3. Weighted Global Optimal Solution
3.2.4. t-Distribution Mutation Strategy
3.3. Implementation Process of IGRO Algorithm
3.4. Algorithm Performance Testing and Comparison
4. Calculus Analysis
4.1. Basic Parameter Settings of Microgrid
4.2. Analysis of Simulation Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, X.Q.; Yu, W.L.; Ai, Q.; Zeng, S.Q. Review of optimal dispatch strategy of microgrid with CCHP system. Electr. Power Autom. Equip. 2017, 37, 26–33. [Google Scholar]
- Gao, L.; Hwang, Y.; Cao, T. An overview of optimization technologies applied in combined cooling, heating and power systems. Renew. Sustain. Energy Rev. 2019, 114, 109344. [Google Scholar]
- Azeem, O.; Ali, M.; Abbas, G.; Uzair, M.; Qahmash, A.; Algarni, A.; Hussain, M. A Comprehensive Review on Integration Challenges, Optimization Techniques and Control Strategies of Hybrid AC/DC Microgrid. Appl. Sci. 2021, 11, 6242. [Google Scholar] [CrossRef]
- Dalala, Z.; Al-Omari, M.; Al-Addous, M.; Bdour, M.; Al-Khasawneh, Y.; Alkasrawi, M. Increased renewable energy penetration in national electrical grids constraints and solutions. Energy 2022, 246, 123361. [Google Scholar] [CrossRef]
- Li, Y.; Wei, Y.; Zhu, F.; Du, J.; Zhao, Z.; Ouyang, M. The path enabling storage of renewable energy toward carbon neutralization in China. Etransportation 2023, 16, 100226. [Google Scholar] [CrossRef]
- Liu, Y.; Dou, Z.; Wang, Z.; Guo, J.; Zhao, J.; Yin, W. Optimal Configuration of Electricity-Heat Integrated Energy Storage Supplier and Multi-Microgrid System Scheduling Strategy Considering Demand Response. Energies 2024, 17, 5436. [Google Scholar] [CrossRef]
- Mahian, O.; Mirzaie, M.R.; Kasaeian, A.; Mousavi, S.H. Exergy analysis in combined heat and power systems: A review. Energy Convers. Manag. 2020, 226, 113467. [Google Scholar] [CrossRef]
- Wang, S.X.; Zhu, W. Review on research of combined cooling heating and power microgrid planning. Electr. Meas. Instrum. 2021, 58, 10–17. [Google Scholar]
- Wu, Q.; Han, J.; Jin, T.; Cai, C.; Meng, S.; Yin, J. Environmental and Economic Dispatch Model for Island Microgrid of Combined Cooling, Heating and Power. Electr. Power 2021, 54, 137–142. [Google Scholar]
- Li, J.H.; Zhu, M.S.; Lu, Y.J.; Huang, Y.J.; Wu, T. Review on Optimal Scheduling of Integrated Energy Systems. Power Syst. Technol. 2021, 45, 2256–2272. [Google Scholar]
- Gao, K.; Wang, T.; Han, C.; Xie, J.; Ma, Y.; Peng, R. A review of optimization of microgrid operation. Energies 2021, 14, 2842. [Google Scholar] [CrossRef]
- Lei, B.; Ren, Y.; Luan, H.; Dong, R.; Wang, X.; Liao, J.; Fang, S.; Gao, K. A Review of Optimization for System Reliability of Microgrid. Mathematics 2023, 11, 822. [Google Scholar] [CrossRef]
- Shezan, S.A.; Kamwa, I.; Ishraque, M.F.; Muyeen, S.; Hasan, K.N.; Saidur, R.; Rizvi, S.M.; Shafiullah, M.; Al-Sulaiman, F.A. Evaluation of different optimization techniques and control strategies of hybrid microgrid: A review. Energies 2023, 16, 1792. [Google Scholar] [CrossRef]
- Wang, Z.; Dou, Z.; Dong, J.; Si, S.; Wang, C. Adaptive dynamic whale optimization algorithm with multi-strategy improvement. Comput. Eng. Des. 2022, 43, 2638–2645. [Google Scholar]
- Li, Y.H.; Xian, R.C.; Zhang, H.Q.; Zhao, F.L.; Li, J.Y.; Wang, W.; Li, Z.Y. Fault Diagnosis for Power Transformers Based on Improved Grey Wolf Algorithm Coupled With Least Squares Support Vector Machine. Power Syst. Technol. 2023, 47, 1470–1478. [Google Scholar]
- Du, X.; Hao, T.; Wang, B.; Wang, Z.; Zhang, J.; Jin, M. Artificial gorilla troops optimizer based on double random disturbance and its application of engineering problem. J. Beijing Univ. Aeronaut. Astronaut. 2025, 51, 1882–1896. [Google Scholar]
- Wei, X.X.; Peng, M.S.; Huang, H.J. Node coverage optimization of wireless sensor network based on multi-strategy improved butterfly optimization algorithm. J. Comput. Appl. 2024, 44, 1009–1017. [Google Scholar]
- Zhao, N.; Zhang, L.; Li, D.; Huang, W.; Xie, W.L.; Yang, Y.J. Optimal capacity allocation method for wind-solar-hydrogen-storage microgrid based on improved honey badger algorithm. Electr. Eng. 2025, 20, 338–351. [Google Scholar]
- Peng, S.Q.; Guo, D.; Li, W.J.; Peng, H.Y.; Li, F. Parameter identification of PMSM based on improved mayfly algorithm. Transducers Microsyst. Technol. 2025, 44, 153–156+160. [Google Scholar]
- Abd El-Sattar, H.; Hassan, M.H.; Vera, D.; Jurado, F.; Kamel, S. Maximizing hybrid microgrid system performance: A comparative analysis and optimization using a gradient pelican algorithm. Renew. Energy 2024, 227, 120480. [Google Scholar] [CrossRef]
- Yuan, Z.; Wang, W.Q.; Wang, H.Y.; Khodaei, H. Improved butterfly optimization algorithm for CCHP driven by PEMFC. Appl. Therm. Eng. 2020, 173, 114766. [Google Scholar] [CrossRef]
- Yun, B.; Bai, S.; Zhang, G. Optimization of CCHP system based on a chaos adaptive particle swarm optimization algorithm. Power Syst. Prot. Control 2020, 48, 123–130. [Google Scholar]
- Li, J.; Wu, L.; Zhang, H.; Wang, W.; Jia, R. Microgrid economic dispatch of combined cooling, heating and power based on a rank pair learning crisscross optimization algorithm. Power Syst. Prot. Control 2021, 49, 137–145. [Google Scholar]
- Fu, C.; Lin, K.; Zhou, Y. Optimal capacity configuration of CCHP system with improved operation strategies using improved multi-objective multi-universe algorithm. Expert Syst. Appl. 2022, 199, 117183. [Google Scholar] [CrossRef]
- Zhao, Y.; Dou, Z.; Yu, Z.; Xie, R.; Qiao, M.; Wang, Y.; Liu, L. Study on the Optimal Dispatching Strategy of a Combined Cooling, Heating and Electric Power System Based on Demand Response. Energies 2022, 15, 3500. [Google Scholar] [CrossRef]
- Qiao, M.; Yu, Z.; Dou, Z.; Wang, Y.; Zhao, Y.; Xie, R.; Liu, L. Study on Economic Dispatch of the Combined Cooling Heating and Power Microgrid Based on Improved Sparrow Search Algorithm. Energies 2022, 15, 5174. [Google Scholar] [CrossRef]
- Si, S.; Dou, Z.; Wang, Z.; Dong, J. The analysis of time-sharing economic exergy efficiency of the CCHP system using planetary search algorithms. J. Comput. Methods Sci. Eng. 2023, 23, 2205–2224. [Google Scholar] [CrossRef]
- Nan, J.; Xiao, Q.; Teimourian, M. Gas engine CCHP system optimization: An energy, exergy economic, and environment analysis and optimization based on developed northern goshawk optimization algorithm. Heliyon 2024, 10, e31208. [Google Scholar] [CrossRef]
- Li, S.; Fang, X.; Liao, J.; Ghadamyari, M.; Khayatnezhad, M.; Ghadimi, N. Evaluating the efficiency of CCHP systems in Xinjiang Uygur Autonomous Region: An optimal strategy based on improved mother optimization algorithm. Case Stud. Therm. Eng. 2024, 54, 104005. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, Y.; Xiong, Z.; Zhang, P.; Zhang, Q.; Jiang, W. Optimal scheduling model of microgrid based on improved dung beetle optimization algorithm. Syst. Sci. Control Eng. 2024, 12, 238533. [Google Scholar] [CrossRef]
- Wang, Z.; Dou, Z.; Liu, Y.; Guo, J.; Zhao, J.; Yin, W. Research on Microgrid Optimal Scheduling Based on an Improved Honey Badger Algorithm. Electronics 2024, 13, 4491. [Google Scholar] [CrossRef]
- Zolfi, K. Gold rush optimizer. A new population-based metaheuristic algorithm. Oper. Res. Decis. 2023, 33, 113–150. [Google Scholar] [CrossRef]
- Kong, W.; Cai, X.; Du, Y.; Jia, B.; Zhang, X.; Wang, L.; Cheng, Z.; Shan, L. Wireless sensor network coverage optimization based on novel multi-strategy gold rush optimizer. Electron. Lett. 2024, 60, e13249. [Google Scholar] [CrossRef]
- Lyu, L.X.; Kong, G.L.; Yang, F.; Li, L.; He, J. Augmented Gold Rush Optimizer Is Used for Engineering Optimization Design Problems and UAV Path Planning. IEEE Access 2024, 12, 134304–134339. [Google Scholar] [CrossRef]
- Zong, Y.M.; Kong, W.B.; Li, J.P.; Wang, L.; Zhang, H.N.; Zhou, F.; Cheng, Z.Y. Optimization of Multilayer Microwave Absorbers using Multi-strategy Improved Gold Rush Optimizer. Appl. Comput. Electromagn. Soc. J. 2024, 39, 708–717. [Google Scholar] [CrossRef]
- Chen, J.; Hu, Z.; Chen, Y.; Chen, J.; Chen, W.; Gao, M.; Lin, M.; Du, Y. Thermoelectric Optimization of Integrated Energy System Considering Ladder-Type Carbon Trading Mechanism and Electric Hydrogen Production. Electr. Power Autom. Equip. 2021, 41, 48–55. [Google Scholar]
- Bangyal, W.H.; Rauf, H.T.; Batool, H.; Bangyal, S.A.; Ahmed, J.; Pervaiz, S. An improved particle swarm optimization algorithm with chi-square mutation strategy. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 481–491. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Oladejo, S.O.; Ekwe, S.O.; Mirjalili, S. The Hiking Optimization Algorithm: A novel human-based metaheuristic approach. Knowl.-Based Syst. 2024, 296, 111880. [Google Scholar] [CrossRef]
- Xue, H. Economic Coordination of Microgrid with Renewable Energy Multi-objective optimization scheduling method. Electrotech. Appl. 2015, 11, 114–119. [Google Scholar]
Number | Names | Limitations | Reference Frame |
---|---|---|---|
F1 | Sphere Function | [−100, 100] | 0 |
F2 | Schwefel’s Problem 2.22 | [−10, 10] | 0 |
F3 | Schwefel’s Problem 1.2 | [−100, 100] | 0 |
F4 | Quartic Function i.e., Noise | [−1.28, 1.28] | 0 |
F5 | Generalized Rastrigin’s Function | [−5.12, 5.12] | 0 |
F6 | Ackley’s Function | [−32, 32] | 0 |
F7 | Generalized Griewank’s Function | [−600, 600] | 0 |
F8 | Generalized Penalized Function | [−50, 50] | 0 |
F9 | Shekel’s Foxholes Function | [−65.54, 65.54] | 0.998 |
F10 | Kowalik’s Function | [−5, 5] | 0.0003 |
Function | Metric | PSO | WOA | GWO | HOA | GRO | IGRO |
---|---|---|---|---|---|---|---|
F1 | Best | 1.12 × 10−5 | 2.79 × 10−94 | 7.84 × 10−35 | 1.66 × 10−28 | 2.73 × 10−78 | 0 |
Mean | 2.78 × 10−4 | 2.18 × 10−86 | 2.07 × 10−33 | 3.21 × 10−26 | 1.02 × 10−72 | 0 | |
Std | 3.61 × 10−4 | 8.42 × 10−86 | 3.12 × 10−33 | 6.10 × 10−26 | 4.91 × 10−72 | 0 | |
F2 | Best | 2.60 × 10−4 | 6.23 × 10−61 | 6.76 × 10−21 | 2.18 × 10−14 | 6.33 × 10−48 | 2.08 × 10−187 |
Mean | 1.67 | 1.04 × 10−52 | 7.81 × 10−20 | 3.49 × 10−13 | 1.43 × 10−45 | 1.13 × 10−176 | |
Std | 3.79 | 4.08 × 10−52 | 1.16 × 10−19 | 3.35 × 10−13 | 4.83 × 10−45 | 1.71 × 10−177 | |
F3 | Best | 3.80 × 102 | 1.50 × 104 | 1.65 × 10−10 | 2.54 × 10−23 | 8.24 × 10−24 | 0 |
Mean | 1.60 × 103 | 2.95 × 104 | 6.36 × 10−8 | 1.39 × 10−21 | 2.7 | 0 | |
Std | 1.71 × 103 | 8.82 × 103 | 1.76 × 10−7 | 2.21 × 10−21 | 1.48 × 10 | 0 | |
F4 | Best | 1.72 × 10−2 | 1.05 × 10−4 | 2.41 × 10−4 | 4.87 × 10−5 | 5.24 × 10−4 | 1.13 × 10−6 |
Mean | 3.45 × 10−2 | 1.83 × 10−3 | 1.16 × 10−3 | 3.59 × 10−4 | 4.15 × 10−3 | 6.19 × 10−5 | |
Std | 1.12 × 10−2 | 1.75 × 10−3 | 5.69 × 10−4 | 2.77 × 10−4 | 2.94 × 10−3 | 7.72 × 10−5 | |
F5 | Best | 2.39 × 10 | 0 | 0 | 0 | 0 | 0 |
Mean | 4.78 × 10 | 1.89 × 10−15 | 1.03 | 1.45 × 10 | 0 | 0 | |
Std | 1.24 × 10 | 1.04 × 10−14 | 2.63 | 3.42 × 10 | 0 | 0 | |
F6 | Best | 9.94 × 10−4 | 8.88 × 10−16 | 4.00 × 10−14 | 1.51 × 10−14 | 4.44 × 10−15 | 8.88 × 10−16 |
Mean | 1.03 × 10−1 | 4.68 × 10−15 | 4.30 × 10−14 | 8.92 × 10−14 | 4.68 × 10−15 | 8.88 × 10−16 | |
Std | 3.59 × 10−1 | 2.27 × 10−15 | 3.82 × 10−15 | 7.58 × 10−14 | 9.01 × 10−16 | 0 | |
F7 | Best | 9.07 × 10−5 | 0 | 0 | 0 | 0 | 0 |
Mean | 2.26 × 10−2 | 2.61 × 10−3 | 3.84 × 10−3 | 0 | 0 | 0 | |
Std | 2.90 × 10−2 | 1.43 × 10−2 | 6.90 × 10−3 | 0 | 0 | 0 | |
F8 | Best | 1.43 × 10−4 | 1.37 × 10−3 | 5.82 × 10−3 | 2.94 × 10−1 | 8.19 × 10−5 | 2.79 × 10−5 |
Mean | 2.04 × 10−1 | 1.68 × 10−2 | 2.76 × 10−2 | 5.07 × 10−1 | 7.09 × 10−4 | 4.68 × 10−4 | |
Std | 2.90 × 10−1 | 3.13 × 10−2 | 1.53 × 10−2 | 1.10 × 10−1 | 1.02 × 10−3 | 4.61 × 10−4 | |
F9 | Best | 9.98 × 10−1 | 9.98 × 10−1 | 9.98 × 10−1 | 9.98 × 10−1 | 9.98 × 10−1 | 9.98 × 10−1 |
Mean | 9.98 × 10−1 | 1.72 | 2.45 | 2.93 | 1.06 | 9.98 × 10−1 | |
Std | 0 | 1.99 | 1.83 | 1.91 | 3.62 × 10−1 | 0 | |
F10 | Best | 3.07 × 10−4 | 3.12 × 10−4 | 3.07 × 10−4 | 3.08 × 10−4 | 3.07 × 10−4 | 3.07 × 10−4 |
Mean | 1.16 × 10−3 | 5.56 × 10−4 | 2.35 × 10−3 | 3.43 × 10−4 | 3.20 × 10−4 | 3.18 × 10−4 | |
Std | 3.64 × 10−3 | 2.81 × 10−4 | 6.11 × 10−3 | 5.85 × 10−5 | 3.68 × 10−5 | 3.14 × 10−5 |
Periods | Purchase Price (¥/kWh) | Sale Price (¥/kWh) |
---|---|---|
Off-Peak Hours (0:00–7:00, 23:00–24:00) | 0.1599 | 0.1230 |
Flat Hours (7:00–10:00, 15:00–18:00, 21:00–23:00) | 0.4551 | 0.3567 |
Peak Hours (10:00–15:00, 18:00–21:00) | 0.7749 | 0.6150 |
Pollutant Types | Pollutant Emission Factors (g/kWh) | Treatment Costs (¥/kg) | ||
---|---|---|---|---|
GT | GB | Grid | ||
CO2 | 386 | 254 | 562 | 0.21 |
SO2 | 0.0036 | 0.764 | 1.34 | 14.84 |
NOx | 0.2 | 0.54 | 1.47 | 62.96 |
Equipment | Price (¥/kW) | Equipment | Price (¥/kW) |
---|---|---|---|
WT | 0.043 | WHB | 0.002 |
PV | 0.029 | AC | 0.02 |
GT | 0.15 | ER | 0.03 |
GB | 0.15 | EB | 0.02 |
BT | 0.016 | HS | 0.006 |
CS | 0.008 |
Algorithm | Daily Operation Cost of Microgrid (¥) | |||
---|---|---|---|---|
Average Value | Standard Deviation | Optimal Value | Worst Value | |
PSO | 14,062.8 | 332.3 | 13,352.0 | 14,601.5 |
WOA | 14,125.9 | 314.2 | 13,505.4 | 14,768.4 |
GWO | 13,929.0 | 306.6 | 13,193.0 | 14,352.9 |
HOA | 14,160.4 | 287.0 | 13,571.8 | 14,638.9 |
GRO | 13,883.9 | 302.0 | 13,167.5 | 14,371.3 |
IGRO | 13,426.9 | 230.1 | 13,096.3 | 13,904.3 |
Algorithm | PSO | WOA | GWO | HOA | GRO | IGRO |
---|---|---|---|---|---|---|
Convergence Time/s | 282.3 | 327.5 | 278.3 | 265.4 | 293.8 | 275.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Dou, Z.; Yan, Y.; Zhou, T.; Chen, J. Research on Optimal Scheduling of the Combined Cooling, Heating, and Power Microgrid Based on Improved Gold Rush Optimization Algorithm. Electronics 2025, 14, 3135. https://doi.org/10.3390/electronics14153135
Liu W, Dou Z, Yan Y, Zhou T, Chen J. Research on Optimal Scheduling of the Combined Cooling, Heating, and Power Microgrid Based on Improved Gold Rush Optimization Algorithm. Electronics. 2025; 14(15):3135. https://doi.org/10.3390/electronics14153135
Chicago/Turabian StyleLiu, Wei, Zhenhai Dou, Yi Yan, Tong Zhou, and Jiajia Chen. 2025. "Research on Optimal Scheduling of the Combined Cooling, Heating, and Power Microgrid Based on Improved Gold Rush Optimization Algorithm" Electronics 14, no. 15: 3135. https://doi.org/10.3390/electronics14153135
APA StyleLiu, W., Dou, Z., Yan, Y., Zhou, T., & Chen, J. (2025). Research on Optimal Scheduling of the Combined Cooling, Heating, and Power Microgrid Based on Improved Gold Rush Optimization Algorithm. Electronics, 14(15), 3135. https://doi.org/10.3390/electronics14153135