MCA-GAN: A Multi-Scale Contextual Attention GAN for Satellite Remote-Sensing Image Dehazing
Abstract
1. Introduction
- Complex imaging conditions: Satellite images are affected by factors including atmospheric thickness, solar angle, and sensor characteristics, leading to highly non-uniform haze distributions and locally dense fog patches.
- Resolution and scale diversity: Remote-sensing images cover expansive regions with heterogeneous land covers and varying spatial scales, demanding robust multi-scale perceptual capabilities.
- High global consistency requirements: As a primary data source for large-scale geographic analysis and change detection, preserving overall structural and color consistency is far more critical than in typical natural images.
- To address the challenge of resolution and scale diversity in remote-sensing imagery, we propose a Multi-Scale Feature Aggregation Block (MFAB) that more accurately extracts and fuses object features across scales—from fine-grained to large-scale structures—thereby restoring land-cover details and enhancing overall visual quality.
- To satisfy the stringent global consistency requirements of remote-sensing images, we propose a Dynamic Contextual Attention Block (DCAB) that balances local detail refinement with global structural and chromatic coherence, ensuring that dehazed outputs preserve both scene integrity and color consistency.
- To demonstrate the efficacy of the proposed method in complex remote-sensing scenarios, we conduct experiments on the public benchmarks—RICE1 (uniform light haze) and RICE2 (non-uniform dense haze). Ablation studies confirm the individual contributions of MFAB and DCAB, and comparative evaluations verify that our method outperforms existing dehazing algorithms.
2. Related Works
3. Method
3.1. Network Architecture
3.2. Multi-Scale Feature Aggregation Block
3.3. Dynamic Contextual Attention Block
4. Experiments
4.1. Datasets
4.2. Experimental Details
4.3. Assessment Criteria
4.3.1. Structural Similarity Index
4.3.2. Peak Signal-to-Noise Ratio
4.4. Contrast Experiment
4.4.1. Experimental Evaluation Based on the RICE1 Dataset
4.4.2. Experimental Evaluation Based on the RICE2 Dataset
4.4.3. Ablation Experiment
- Base + MFAB: After adding MFAB to the base network, PSNR increased from 28.2786 to 31.8028, and SSIM rose from 0.8512 to 0.8752. This indicates that the MFAB module enhances the backbone network’s capacity for multi-scale feature extraction, enabling a hierarchical approach to dehazing—first coarse removal of haze followed by fine restoration—and significantly improving both dehazing performance and image realism.
- Base + MFAB + DCAB: After adding DCAB, PSNR and SSIM further improved to 32.8245 and 0.8806, respectively. This indicates that the DCAB block augments the backbone network’s ability to represent complex semantic and structural details, aiding the model’s contextual understanding in intricate scenes and ensuring consistency of color and texture across regions, thereby further strengthening the quality restoration and feature representation accuracy of the generated remote-sensing images.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rahil, I.; Bouarifi, W.; Oujaoura, M. A Review of Computer Vision Techniques for Video Violence Detection and intelligent video surveillance systems. Int. J. Adv. Trends Comput. Sci. Eng. 2022, 11, 62–70. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, H.; Gao, L.; Li, D.; Wang, C.; Xu, L.; Mollaee, S.; Li, J. SECBNet: Semantic Segmentation Enhanced Color Balance Network for Optical Satellite Images. IEEE Trans. Geosci. Remote Sens. 2024, 63, 4200313. [Google Scholar] [CrossRef]
- Xu, Y.; Khan, T.M.; Song, Y.; Meijering, E. Edge deep learning in computer vision and medical diagnostics: A comprehensive survey. Artif. Intell. Rev. 2025, 58, 93. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, L.; Konz, N. Computer vision techniques in manufacturing. IEEE Trans. Syst. Man Cybern. Syst. 2022, 53, 105–117. [Google Scholar] [CrossRef]
- Land, E. Lightness and retinex theory. J. Opt. Soc. Am. 1967, 58, 1428A. [Google Scholar] [CrossRef] [PubMed]
- Jobson, D.J.; Rahman, Z.U.; Woodell, G.A. Properties and performance of a center/surround retinex. IEEE Trans. Image Process. 1997, 6, 451–462. [Google Scholar] [CrossRef] [PubMed]
- Jobson, D.J.; Rahman, Z.U.; Woodell, G.A. A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. 1997, 6, 965–976. [Google Scholar] [CrossRef] [PubMed]
- Noori, H.; Gholizadeh, M.H.; Rafsanjani, H.K. Digital image defogging using joint Retinex theory and independent component analysis. Comput. Vis. Image Underst. 2024, 245, 104033. [Google Scholar] [CrossRef]
- Narasimhan, S.G.; Nayar, S.K. Vision and the atmosphere. Int. J. Comput. Vis. 2002, 48, 233–254. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 2341–2353. [Google Scholar] [CrossRef]
- Lu, S.; Zhang, D.; Jin, X.; Guo, D. A Single Image Defogging Algorithm Based on Bright and Dark Region Segmentation. In Proceedings of the 2023 35th Chinese Control and Decision Conference (CCDC), Shenyang, China, 27–29 May 2023; pp. 1661–1667. [Google Scholar]
- Zhang, X.; Wang, T.; Luo, W.; Huang, P. Multi-level fusion and attention-guided CNN for image dehazing. IEEE Trans. Circuits Syst. Video Technol. 2020, 31, 4162–4173. [Google Scholar] [CrossRef]
- Singh, K.; Khare, V.; Agarwal, V.; Sourabh, S. A review on gan based image dehazing. In Proceedings of the 2022 6th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 25–27 May 2022; pp. 1565–1571. [Google Scholar] [CrossRef]
- Liu, J.; Wang, S.; Wang, X.; Ju, M.; Zhang, D. A review of remote sensing image dehazing. Sensors 2021, 21, 3926. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.; Xu, X.; Jia, K.; Qing, C.; Tao, D. Dehazenet: An end-to-end system for single image haze removal. IEEE Trans. Image Process. 2016, 25, 5187–5198. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Peng, X.; Wang, Z.; Xu, J.; Feng, D. Aod-net: All-in-one dehazing network. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4770–4778. [Google Scholar] [CrossRef]
- Liu, J.; Yu, H.; Zhang, Z.; Chen, C.; Hou, Q. Deep multi-scale network for single image dehazing with self-guided maps. Signal Image Video Process. 2023, 17, 2867–2875. [Google Scholar] [CrossRef]
- Li, X.; Hou, Y. Multi-Scale Image Dehazing Algorithm with Attention Mechanism. In Proceedings of the 2024 4th International Conference on Computer Science and Blockchain (CCSB), Shenzhen, China, 6–8 September 2024; pp. 460–465. [Google Scholar] [CrossRef]
- Ouyang, D.; He, S.; Zhang, G.; Luo, M.; Guo, H.; Zhan, J.; Huang, Z. Efficient multi-scale attention module with cross-spatial learning. In Proceedings of the ICASSP 2023–2023 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP), Rhodes, Greece, 4–10 June 2023; pp. 1–5. [Google Scholar]
- Sun, S.; Han, S.; Xu, J.; Zhao, J.; Xu, Z.; Li, L.; Han, Z.; Mo, B. IDDNet: Infrared Object Detection Network Based on Multi-Scale Fusion Dehazing. Sensors 2025, 25, 2169. [Google Scholar] [CrossRef]
- Huang, G.; Zhang, J. MAPF-Net:Lightweight network for dehazing via multi-scale attention and physics-aware feature fusion. J. Supercomput. 2025, 81, 560. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Li, J.; Hua, Z. LBP-based multi-scale feature fusion enhanced dehazing networks. Multimed. Tools Appl. 2024, 83, 20083–20115. [Google Scholar] [CrossRef]
- Wang, C.; Chen, R.; Lu, Y.; Yan, Y.; Wang, H. Recurrent context aggregation network for single image dehazing. IEEE Signal Process. Lett. 2021, 28, 419–423. [Google Scholar] [CrossRef]
- Liang, Y.; Li, S.; Cheng, D.; Wang, W.; Li, D.; Liang, J. Image dehazing via self-supervised depth guidance. Pattern Recognit. 2025, 158, 111051. [Google Scholar] [CrossRef]
- Singh, P.; Komodakis, N. Cloud-gan: Cloud removal for sentinel-2 imagery using a cyclic consistent generative adversarial networks. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 1772–1775. [Google Scholar] [CrossRef]
- Pan, H. Cloud removal for remote sensing imagery via spatial attention generative adversarial network. arXiv 2020, arXiv:2009.13015. [Google Scholar]
- Lin, D.; Xu, G.; Wang, X.; Wang, Y.; Sun, X.; Fu, K. A remote sensing image dataset for cloud removal. arXiv 2019, arXiv:1901.00600. [Google Scholar]
- Cao, Z.-H.; Liang, Y.-J.; Deng, L.-J.; Vivone, G. An Efficient Image Fusion Network Exploiting Unifying Language and Mask Guidance. IEEE Trans. Pattern Anal. Mach. Intell. 2025, 1–18. [Google Scholar] [CrossRef]
- Lu, C.; Su, C. Super Resolution Reconstruction of Mars Thermal Infrared Remote Sensing Images Integrating Multi-Source Data. Remote Sens. 2025, 17, 2115. [Google Scholar] [CrossRef]
- Hore, A.; Ziou, D. Image quality metrics: PSNR vs. SSIM. In Proceedings of the 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2366–2369. [Google Scholar] [CrossRef]
- Lv, M.; Song, S.; Jia, Z.; Li, L.; Ma, H. Multi-Focus Image Fusion Based on Dual-Channel Rybak Neural Network and Consistency Verification in NSCT Domain. Fractal Fract. 2025, 9, 432. [Google Scholar] [CrossRef]
- Li, L.; Song, S.; Lv, M.; Jia, Z.; Ma, H. Multi-Focus Image Fusion Based on Fractal Dimension and Parameter Adaptive Unit-Linking Dual-Channel PCNN in Curvelet Transform Domain. Fractal Fract. 2025, 9, 157. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, D.; Zou, P.; Zhang, W.; Zhang, W. Retinex-based laplacian pyramid method for image defogging. IEEE Access 2019, 7, 122459–122472. [Google Scholar] [CrossRef]
- Qin, X.; Wang, Z.; Bai, Y.; Xie, X.; Jia, H. FFA-Net: Feature fusion attention network for single image dehazing. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020. [Google Scholar]
- Song, Y.; He, Z.; Qian, H.; Du, X. Vision transformers for single image dehazing. IEEE Trans. Image Process. 2023, 32, 1927–1941. [Google Scholar] [CrossRef]
- Chi, K.; Yuan, Y.; Wang, Q. Trinity-Net: Gradient-guided Swin transformer-based remote sensing image dehazing and beyond. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–14. [Google Scholar] [CrossRef]
- Ning, J.; Yin, J.; Deng, F.; Xie, L. MABDT: Multi-scale attention boosted deformable transformer for remote sensing image dehazing. Signal Process. 2025, 229, 109768. [Google Scholar] [CrossRef]
- Leng, Z.; Wang, M.; Wan, Q.; Xu, Y.; Yan, B.; Sun, S. Meta-learning of feature distribution alignment for enhanced feature sharing. Knowledge-Based Systems 2024, 296, 111875. [Google Scholar] [CrossRef]
- Liu, H.-I.; Galindo, M.; Xie, H.; Wong, L.-K.; Shuai, H.-H.; Li, Y.-H.; Cheng, W.-H. Lightweight deep learning for resource-constrained environments: A survey. ACM Comput. Surv. 2024, 56, 1–42. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Batch-size | 2 |
Epoch | 100 |
Learning rate | 0.0002 |
Optimization algorithm | Adam |
Train size | 0.9 |
Test size | 0.1 |
Experiment | Publication | RICE1 | Pars (M) | FLOPs (G) | Run-Time (s) | |
---|---|---|---|---|---|---|
PSNR (dB) | SSIM | |||||
DCP [10] | TPAM’10 | 17.5364 | 0.8273 | - | - | 0.022 |
Retinex [33] | IA’19 | 17.4278 | 0.7490 | - | - | 2.662 |
FFA-Net [34] | AAAI’20 | 27.0661 | 0.9246 | 4.46 | 2300.27 | 0.410 |
SPA-GAN [26] | arXiv’20 | 29.6891 | 0.9322 | 2.98 | 67.93 | 0.117 |
DehazeFormer-S [35] | TIP’23 | 30.3949 | 0.9490 | 1.28 | 24.11 | 0.020 |
Trinity-Net [36] | TGRS’23 | 26.6879 | 0.9416 | 20.24 | 122.59 | 3.381 |
MABDT [37] | SP’25 | 31.2155 | 0.9521 | 11.83 | 127.98 | 0.178 |
MCA-GAN (our) | - | 32.0126 | 0.9578 | 3.00 | 75.45 | 0.193 |
Experiment | Publication | RICE2 | Pars (M) | Flops (G) | Run-Time (s) | |
---|---|---|---|---|---|---|
PSNR (dB) | SSIM | |||||
DCP [10] | TPAM’10 | 16.6438 | 0.8041 | - | - | 0.022 |
Retinex [33] | IA’19 | 16.9988 | 0.6001 | - | - | 2.662 |
FFA-Net [34] | AAAI’20 | 27.2854 | 0.8571 | 4.46 | 2300.27 | 0.410 |
SPA-GAN [26] | arXiv’20 | 28.2786 | 0.8512 | 2.98 | 67.93 | 0.117 |
DehazeFormer-S [35] | TIP’23 | 32.1217 | 0.8785 | 1.28 | 24.11 | 0.020 |
Trinity-Net [36] | TGRS’23 | 29.0728 | 0.8702 | 20.24 | 122.59 | 3.381 |
MABDT [37] | SP’25 | 32.4862 | 0.8842 | 11.83 | 127.98 | 0.178 |
MCA-GAN (our) | - | 32.8245 | 0.8806 | 3.00 | 75.45 | 0.193 |
Experiment | PSNR (dB) | SSIM | Param (M) |
---|---|---|---|
Base | 28.2786 | 0.8512 | 2.98 |
Base + MFAB | 31.8028 | 0.8752 | 2.99 |
Base + MFAB + DCAB (ours) | 32.8245 | 0.8806 | 3.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Zhang, Y.; Yu, Z.; Yang, S.; Kang, H.; Xu, J. MCA-GAN: A Multi-Scale Contextual Attention GAN for Satellite Remote-Sensing Image Dehazing. Electronics 2025, 14, 3099. https://doi.org/10.3390/electronics14153099
Zhang S, Zhang Y, Yu Z, Yang S, Kang H, Xu J. MCA-GAN: A Multi-Scale Contextual Attention GAN for Satellite Remote-Sensing Image Dehazing. Electronics. 2025; 14(15):3099. https://doi.org/10.3390/electronics14153099
Chicago/Turabian StyleZhang, Sufen, Yongcheng Zhang, Zhaofeng Yu, Shaohua Yang, Huifeng Kang, and Jingman Xu. 2025. "MCA-GAN: A Multi-Scale Contextual Attention GAN for Satellite Remote-Sensing Image Dehazing" Electronics 14, no. 15: 3099. https://doi.org/10.3390/electronics14153099
APA StyleZhang, S., Zhang, Y., Yu, Z., Yang, S., Kang, H., & Xu, J. (2025). MCA-GAN: A Multi-Scale Contextual Attention GAN for Satellite Remote-Sensing Image Dehazing. Electronics, 14(15), 3099. https://doi.org/10.3390/electronics14153099