Energy-Efficient Current Control Strategy for Drive Modules of Permanent Magnetic Actuators
Abstract
1. Introduction
2. System Configuration
2.1. One-Coil PMA
2.2. Drive Module
3. Conventional Voltage Control Strategy
3.1. Required Current for Closing Operation
3.2. Selection of Vcoil and Ton
4. Proposed Current Control Strategy
5. Experimental Verification
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Sun, L.; He, S.; Geng, Y.; Liu, Z. A permanent magnetic actuator for 126 kV vacuum circuit breakers. IEEE Trans. Magn. 2014, 50, 129–135. [Google Scholar] [CrossRef]
- Shu, L.; Wu, L.; Wu, G.; Wu, Z. A fully coupled framework of predicting the dynamic characteristics of permanent magnet contactor. IEEE Trans. Magn. 2016, 52, 8001607. [Google Scholar] [CrossRef]
- Dullni, E.; Fink, H.; Reuber, C. A Vacuum Circuit-Breaker with Permanent Magnetic Actuator and Electronic Control. 1999. Available online: https://library.e.abb.com/public/5e750b2ecc5b760ec1256ad4002d2c00/cired99_Nice_VM1.pdf (accessed on 1 May 2025).
- Xin, L.; Huijun, G.; Zhiyuan, C. Magnetic field calculation and dynamic behavior analyses of the permanent magnetic actuator. In Proceedings of the 19th International Symposium on Discharge and Electrical Insulation in Vacuum (ISDEIV 2000), Xi’an, China, 18–22 September 2000; pp. 1–4. [Google Scholar]
- Fang, S.; Liu, Q.; Lin, H.; Ho, S.L. A novel flux-weakening control strategy for permanent-magnet actuator of vacuum circuit breaker. IEEE Trans. Ind. Electron. 2016, 63, 2275–2283. [Google Scholar] [CrossRef]
- Guo, L.Q.; Li, Y.X.; Wang, T.Z.; Wang, H.; Wang, H.W. Dynamic performance research on bi-stable permanent magnetic actuator applied in 40.5kV vacuum circuit breaker. In Proceedings of the 2nd International Conference on Power and Renewable Energy (ICPRE 2017), Chengdu, China, 20–24 September 2017; pp. 87–92. [Google Scholar]
- Liu, F.; Guo, H.; Yang, Q.; Zhang, L.; Yan, W. An improved approach to calculate the dynamic characteristics of permanent magnetic actuator of vacuum circuit breaker. IEEE Trans. Appl. Supercond. 2004, 14, 1918–1921. [Google Scholar] [CrossRef]
- Lee, C.-H.; Shin, B.H.; Bang, Y.-B. Designing a permanent-magnetic actuator for vacuum circuit breakers using the Taguchi method and dynamic characteristic analysis. IEEE Trans. Ind. Electron. 2016, 63, 1655–1664. [Google Scholar] [CrossRef]
- Hong, S.-K.; Ro, J.-S.; Jung, H.-K. Optimal design of a novel permanent magnetic actuator using evolutionary strategy algorithm and kriging meta-model. J. Electr. Eng. Technol. 2014, 9, 471–477. [Google Scholar] [CrossRef]
- Ahn, H.-M.; Chung, T.-K.; Oh, Y.-H.; Song, K.-D.; Kim, Y.-I.; Kho, H.-R.; Choi, M.-S.; Hahn, S.-C. Optimal design of permanent magnetic actuator for permanent magnet reduction and dynamic characteristic improvement using response surface methodology. J. Electr. Eng. Technol. 2015, 10, 935–943. [Google Scholar] [CrossRef]
- Gabdullin, N.; Ro, J. Novel non-linear transient path energy method for the analytical analysis of the non-periodic and non-linear dynamics of electrical machines in the time domain. IEEE Access 2019, 7, 37833–37854. [Google Scholar] [CrossRef]
- Gabdullin, N.; Ro, J.-S. Analysis of nonlinear dynamics of permanent magnet magnetic contactor via novel computationally efficient analytical method considering stray and leakage fluxes. IEEE Access 2020, 8, 57273–57282. [Google Scholar] [CrossRef]
- Pei, X.; Smith, A.C.; Shuttleworth, R.; Vilchis-Rodriguez, D.S.; Barnes, M. Fast operating moving coil actuator for a vacuum interrupter. IEEE Trans. Energy Convers. 2017, 32, 931–940. [Google Scholar] [CrossRef]
- Espinosa, A.G.; Ruiz, J.R.R.; Morera, X.A. A sensorless method for controlling the closure of a contactor. IEEE Trans. Magn. 2007, 43, 3896–3903. [Google Scholar] [CrossRef]
- Espinosa, A.G.; Ruiz, J.-R.R.; Cusido, J.; Morera, X.A. Sensorless control and fault diagnosis of electromechanical contactors. IEEE Trans. Ind. Electron. 2008, 55, 3742–3750. [Google Scholar] [CrossRef]
- Espinosa, A.G.; Ruiz, J.R.R.; Cusidó, J.; Ortega, J.A.; Romeral, L. Closed-loop controller for eliminating the contact bounce in DC core contactors. IEEE Trans. Compon. Packag. Technol. 2010, 33, 535–543. [Google Scholar] [CrossRef]
- Wang, X.; Lin, H.; Ho, S.L.; Fang, S.; Jin, P. Analysis of dynamic characteristics of permanent magnet contactor with sensorless displacement profile control. IEEE Trans. Magn. 2010, 46, 1633–1636. [Google Scholar] [CrossRef]
- Straußerger, F.; Schwab, M.; Braun, T.; Reuter, J. New results for position estimation in electro-magnetic actuators using a modified discrete time class A/B model reference approach. In Proceedings of the 19th International Conference on Methods and Models in Automation and Robotics (MMAR 2014), Miedzyzdroje, Poland, 2–5 September 2014; pp. 229–234. [Google Scholar]
- Maridor, J.; Katic, N.; Perriard, Y.; Ladas, D. Sensorless position detection of a linear actuator using the resonance frequency. In Proceedings of the 12th International Conference on Electrical Machines and Systems (ICEMS 2009), Tokyo, Japan, 15–18 November 2009; pp. 1–6. [Google Scholar]
- Hafni, A.E.; Abdelrahem, M.; Kennel, R. Position estimation for linear electromagnetic actuators. In Proceedings of the 8th IEEE International Symposium on Sensorless Control for Electrical Drives (SLED 2017), Catania, Italy, 18–19 September 2017; pp. 219–224. [Google Scholar]
- Zeng, G.; Yang, X.; Yu, H.; Jing, Y.; Zhao, S.; Cao, J.; Chen, Q.; Gao, M.; Zhang, Z. Sensorless control for unsymmetrical bistable multimagnetic circuit permanent magnet actuator based on high-frequency signal injection and high-pass filter circuit. IEEE Trans. Ind. Electron. 2022, 69, 10859–10869. [Google Scholar] [CrossRef]
- Ramirez-Laboreo, E.; Moya-Lasheras, E.; Sagues, C. Real-time electromagnetic estimation for reluctance actuators. IEEE Trans. Ind. Electron. 2019, 66, 1952–1961. [Google Scholar] [CrossRef]
- Braun, T.; Schwab, M.; Straußberger, F.; Reuter, J. State estimation for fast-switching solenoid valves—A Nonlinear sliding-mode-observer approach. In Proceedings of the 19th International Conference on Methods and Models in Automation and Robotics (MMAR 2014), Miedzyzdroje, Poland, 2–5 September 2014; pp. 282–287. [Google Scholar]
- Braun, T.; Straußberger, F.; Reuter, J. State estimation for fast-switching solenoid valves: A study on practical nonlinear observers and new experimental results. In Proceedings of the 20th International Conference on Methods and Models in Automation and Robotics (MMAR 2015), Miedzyzdroje, Poland, 24–27 August 2015; pp. 862–867. [Google Scholar]
- Tang, J.; Lu, S.; Xie, J.; Cheng, Z. Contact force monitoring and its application in vacuum circuit breakers. IEEE Trans. Power Deliv. 2017, 32, 2154–2161. [Google Scholar] [CrossRef]
- Lin, H.; Wang, X.; Fang, S.; Jin, P.; Ho, S.L. Design, optimization, and intelligent control of permanent-magnet contactor. IEEE Trans. Ind. Electron. 2013, 60, 5148–5159. [Google Scholar] [CrossRef]
Parameter | Symbol | Value | |
---|---|---|---|
Drive Module | Rated power | Prated | 10 kW |
Input voltage | Vin | 125 V | |
Maximum output voltage | Vmax | 400 V | |
Maximum output current | Imax | 40 A | |
DC-link voltage | VDC | 400 V | |
DC-link capacitance | CDC | 36 mF | |
Switching frequency | fsw | 10 kHz | |
Voltage limit | Vlimit | 260 V | |
Applied time | Ton | 110 ms | |
PMA | Minimum current at the EOS | IEOS | 21 A |
Total stroke distance | xstroke | 44 mm | |
Mass of the mover | mmover | 8.2 kgf | |
Bellows spring constant | kbellows | 18.6 kN/m | |
Open spring constant | kopen | 185 kN/m | |
Contact spring constant | kcontact | 485 kN/m | |
Stretched distance of bellows | xbellows | 40 mm | |
Compressed distance of open spring | xopen | 44 mm | |
Compressed distance of contact spring | xcontact | 4 mm | |
Residual flux density of permanent magnet | Br | 1.45 T |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.-K.; Kim, J.-S.; Kim, J.-H. Energy-Efficient Current Control Strategy for Drive Modules of Permanent Magnetic Actuators. Electronics 2025, 14, 2972. https://doi.org/10.3390/electronics14152972
Yang H-K, Kim J-S, Kim J-H. Energy-Efficient Current Control Strategy for Drive Modules of Permanent Magnetic Actuators. Electronics. 2025; 14(15):2972. https://doi.org/10.3390/electronics14152972
Chicago/Turabian StyleYang, Hyoung-Kyu, Jin-Seok Kim, and Jin-Hong Kim. 2025. "Energy-Efficient Current Control Strategy for Drive Modules of Permanent Magnetic Actuators" Electronics 14, no. 15: 2972. https://doi.org/10.3390/electronics14152972
APA StyleYang, H.-K., Kim, J.-S., & Kim, J.-H. (2025). Energy-Efficient Current Control Strategy for Drive Modules of Permanent Magnetic Actuators. Electronics, 14(15), 2972. https://doi.org/10.3390/electronics14152972