Deploying Optimized Deep Vision Models for Eyeglasses Detection on Low-Power Platforms
Abstract
1. Introduction
- Performing a systematic study on the optimization of CNNs for the specific task of eyeglasses detection on low-power edge devices, a domain where the trade-offs between accuracy and computational efficiency have not been comprehensively evaluated in the context of this application.
- Systematically evaluating multiple CNN architectures using the high-quality and diverse FFHQ dataset, annotated with eyeglass bounding boxes, to determine model generalization across various facial attributes and eyewear styles.
- Applying and comparing several quantization techniques, including Float16, dynamic range, and full integer quantization, to reduce model size and computational requirements while preserving detection accuracy.
- Deploying and benchmarking the optimized models on Raspberry Pi 5 and NVIDIA Jetson Orin Nano platforms, providing a comprehensive assessment of real-world inference latency, detection accuracy in terms of IoU, and memory footprint in practical edge computing scenarios.
2. Materials and Methods
2.1. Experimental Setup
2.1.1. Model Summary
2.1.2. Model Training
2.1.3. Model Optimizations for Edge Deployment
2.1.4. Performance Evaluation
2.2. Data Preparation
- FFHQ (Flickr-Faces-HQ) (https://github.com/NVlabs/ffhq-dataset, accessed on 2 June 2025) [67]. The FFHQ dataset of 70,000 images containing diverse, high-quality facial images.
- The extension of the FFHQ dataset for the eyewear detection [58] available at Zenodo (https://doi.org/10.5281/zenodo.14252074) (accessed on 2 June 2025) consisting of approximately 16,000 images with eyeglasses.
2.3. Software Used
- Python (version 3.11.9) (https://www.python.org, (accessed on 16 April 2025)) [72], an interpreted, high-level, general-purpose programming language. Used for the machine learning applications.
- TensorFlow (version 2.17.0) with Keras (version 3.5.0) and KerasCV (version 0.9.0) (https://www.tensorflow.org, (accessed on 16 April 2025) [73,74,75], an open-source platform for machine learning. Used for the training of deep vision models for eyeglasses detection.
- Albumentations (version 1.4.14) (https://albumentations.ai, (accessed on 16 April 2025)) [76], a Python library for fast and flexible image augmentation. Used for the image augmentations during deep vision model training.
- OpenCV (version 4.10.0) (https://opencv.org/, (accessed on 16 April 2025)) [77], an open source computer vision library. Used for image input/output and manipulations.
2.4. Hardware Used
- Workstation for deep vision model training: NVIDIA GeForce RTX 4090 GPU, Intel Core i7 12700K CPU, 128 GB RAM.
- Low-power system 1 for deployment testing: Raspberry Pi 5 single-board computer with quad-core ARM Cortex-A76 CPU, 8 GB RAM. OS: Ubuntu 20.04.6 LTS, JetPack v5.1.1, L4T v35.3.1.
- Low-power system 2 for deployment testing: NVIDIA Jetson Orin Nano development board with a quad-core ARM Cortex-A57 MPCore CPU, 4 GB RAM. OS: Debian GNU/Linux 12 (bookworm).
3. Results and Discussion
3.1. Impact of Quantization
3.2. Failure Case Analysis
3.3. Deployment Guidelines
- For real-time eyeglasses detection on embedded platforms, MobileNet (0.5), MobileNetV2 (0.5) are recommended due to their balance of accuracy, compactness, and throughput after quantization.
- Full int8 quantization should be favored for scenarios with stringent memory and latency requirements, accepting minimal accuracy loss (≤5%). Dynamic int8 serves as an effective compromise when slightly higher accuracy preservation is needed.
- Raspberry Pi 5 demonstrated greater FPS improvements from quantization than Jetson Orin Nano without GPU acceleration, but absolute throughput was comparable. Both platforms are suitable for the deployment of quantized models, with model selection tailored to application-specific accuracy and speed constraints.
3.4. Limitations and Future Work
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FFHQ | Flickr-Faces-HQ |
CNN | Convolutional neural network |
SSD | Single Shot MultiBox Detector |
FPS | Frames per second |
IoU | Intersection over union |
VPU | Vision processing unit |
NPU | Neural processing unit |
TFLite | TensorFlow Lite |
References
- Merenda, M.; Porcaro, C.; Iero, D. Edge machine learning for ai-enabled iot devices: A review. Sensors 2020, 20, 2533. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge computing: Vision and challenges. IEEE Internet Things J. 2016, 3, 637–646. [Google Scholar] [CrossRef]
- Rancea, A.; Anghel, I.; Cioara, T. Edge computing in healthcare: Innovations, opportunities, and challenges. Future Internet 2024, 16, 329. [Google Scholar] [CrossRef]
- Chen, J.; Ran, X. Deep learning with edge computing: A review. Proc. IEEE 2019, 107, 1655–1674. [Google Scholar] [CrossRef]
- Goethals, T.; Volckaert, B.; De Turck, F. Enabling and leveraging AI in the intelligent edge: A review of current trends and future directions. IEEE Open J. Commun. Soc. 2021, 2, 2311–2341. [Google Scholar] [CrossRef]
- Žuraulis, V.; Matuzevičius, D.; Serackis, A. A method for automatic image rectification and stitching for vehicle yaw marks trajectory estimation. Promet-Traffic Transp. 2016, 28, 23–30. [Google Scholar] [CrossRef]
- Dutta, L.; Bharali, S. Tinyml meets iot: A comprehensive survey. Internet Things 2021, 16, 100461. [Google Scholar] [CrossRef]
- Novac, P.E.; Boukli Hacene, G.; Pegatoquet, A.; Miramond, B.; Gripon, V. Quantization and deployment of deep neural networks on microcontrollers. Sensors 2021, 21, 2984. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Sun, D.; Liu, S.; Gaudiot, J.L. Enabling Deep Learning on IoT Devices. Computer 2017, 50, 92–96. [Google Scholar] [CrossRef]
- Heydari, S.; Mahmoud, Q.H. Tiny Machine Learning and On-Device Inference: A Survey of Applications, Challenges, and Future Directions. Sensors 2025, 25, 3191. [Google Scholar] [CrossRef]
- Suwannaphong, T.; Jovan, F.; Craddock, I.; McConville, R. Optimising TinyML with quantization and distillation of transformer and mamba models for indoor localisation on edge devices. Sci. Rep. 2025, 15, 10081. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Li, G.; Han, S.; Shi, L.; Xie, Y. Model compression and hardware acceleration for neural networks: A comprehensive survey. Proc. IEEE 2020, 108, 485–532. [Google Scholar] [CrossRef]
- Roth, W.; Schindler, G.; Klein, B.; Peharz, R.; Tschiatschek, S.; Fröning, H.; Pernkopf, F.; Ghahramani, Z. Resource-efficient neural networks for embedded systems. J. Mach. Learn. Res. 2024, 25, 1–51. [Google Scholar]
- Ghimire, D.; Kil, D.; Kim, S.h. A survey on efficient convolutional neural networks and hardware acceleration. Electronics 2022, 11, 945. [Google Scholar] [CrossRef]
- Liu, L.; Wang, L.; Ma, Z. Improved lightweight YOLOv5 based on ShuffleNet and its application on traffic signs detection. PLoS ONE 2024, 19, e0310269. [Google Scholar] [CrossRef] [PubMed]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching for MobileNetV3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1314–1324. [Google Scholar]
- Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50× fewer parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360. [Google Scholar]
- Zhu, Q.; Zhuang, H.; Zhao, M.; Xu, S.; Meng, R. A study on expression recognition based on improved mobilenetV2 network. Sci. Rep. 2024, 14, 8121. [Google Scholar] [CrossRef] [PubMed]
- Arora, L.; Singh, S.K.; Kumar, S.; Gupta, H.; Alhalabi, W.; Arya, V.; Bansal, S.; Chui, K.T.; Gupta, B.B. Ensemble deep learning and EfficientNet for accurate diagnosis of diabetic retinopathy. Sci. Rep. 2024, 14, 30554. [Google Scholar] [CrossRef]
- Liu, D.; Zhu, Y.; Liu, Z.; Liu, Y.; Han, C.; Tian, J.; Li, R.; Yi, W. A survey of model compression techniques: Past, present, and future. Front. Robot. AI 2025, 12, 1518965. [Google Scholar] [CrossRef]
- He, Y.; Xiao, L. Structured pruning for deep convolutional neural networks: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 46, 2900–2919. [Google Scholar] [CrossRef]
- Liang, T.; Glossner, J.; Wang, L.; Shi, S.; Zhang, X. Pruning and quantization for deep neural network acceleration: A survey. Neurocomputing 2021, 461, 370–403. [Google Scholar] [CrossRef]
- Gou, J.; Yu, B.; Maybank, S.J.; Tao, D. Knowledge distillation: A survey. Int. J. Comput. Vis. 2021, 129, 1789–1819. [Google Scholar] [CrossRef]
- Zhu, K.; Hu, F.; Ding, Y.; Zhou, W.; Wang, R. A comprehensive review of network pruning based on pruning granularity and pruning time perspectives. Neurocomputing 2025, 626, 129382. [Google Scholar] [CrossRef]
- Li, Z.; Li, H.; Meng, L. Model compression for deep neural networks: A survey. Computers 2023, 12, 60. [Google Scholar] [CrossRef]
- Peng, P.; You, M.; Xu, W.; Li, J. Fully integer-based quantization for mobile convolutional neural network inference. Neurocomputing 2021, 432, 194–205. [Google Scholar] [CrossRef]
- Alkhulaifi, A.; Alsahli, F.; Ahmad, I. Knowledge distillation in deep learning and its applications. PeerJ Comput. Sci. 2021, 7, e474. [Google Scholar] [CrossRef]
- Sze, V.; Chen, Y.H.; Yang, T.J.; Emer, J.S. Efficient Processing of Deep Neural Networks; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Dantas, P.V.; Sabino da Silva Jr, W.; Cordeiro, L.C.; Carvalho, C.B. A comprehensive review of model compression techniques in machine learning. Appl. Intell. 2024, 54, 11804–11844. [Google Scholar] [CrossRef]
- Dai, S.; Luo, Z.; Luo, W.; Wang, S.; Dai, C.; Guo, B.; Zhou, X. Energy-Efficient Inference With Software-Hardware Co-Design for Sustainable Artificial Intelligence of Things. IEEE Internet Things J. 2024, 11, 39170–39182. [Google Scholar] [CrossRef]
- Singh, R.; Gill, S.S. Edge AI: A survey. Internet Things Cyber-Phys. Syst. 2023, 3, 71–92. [Google Scholar] [CrossRef]
- Cittadini, E.; Marinoni, M.; Buttazzo, G. A hardware accelerator to support deep learning processor units in real-time image processing. Eng. Appl. Artif. Intell. 2025, 145, 110159. [Google Scholar] [CrossRef]
- Dunkel, E.R.; Swope, J.; Candela, A.; West, L.; Chien, S.A.; Towfic, Z.; Buckley, L.; Romero-Ca nas, J.; Espinosa-Aranda, J.L.; Hervas-Martin, E.; et al. Benchmarking deep learning models on myriad and snapdragon processors for space applications. J. Aerosp. Inf. Syst. 2023, 20, 660–674. [Google Scholar] [CrossRef]
- Corral, J.M.R.; Civit-Masot, J.; Luna-Perejón, F.; Díaz-Cano, I.; Morgado-Estévez, A.; Domínguez-Morales, M. Energy efficiency in edge TPU vs. embedded GPU for computer-aided medical imaging segmentation and classification. Eng. Appl. Artif. Intell. 2024, 127, 107298. [Google Scholar] [CrossRef]
- Kirtas, M.; Oikonomou, A.; Passalis, N.; Mourgias-Alexandris, G.; Moralis-Pegios, M.; Pleros, N.; Tefas, A. Quantization-aware training for low precision photonic neural networks. Neural Netw. 2022, 155, 561–573. [Google Scholar] [CrossRef]
- Cherniuk, D.; Abukhovich, S.; Phan, A.H.; Oseledets, I.; Cichocki, A.; Gusak, J. Quantization Aware Factorization for Deep Neural Network Compression. J. Artif. Intell. Res. 2024, 81, 973–988. [Google Scholar] [CrossRef]
- Jiang, B.; Chen, J.; Liu, Y. Single-shot pruning and quantization for hardware-friendly neural network acceleration. Eng. Appl. Artif. Intell. 2023, 126, 106816. [Google Scholar] [CrossRef]
- Sledevič, T.; Serackis, A.; Plonis, D. FPGA Implementation of a Convolutional Neural Network and Its Application for Pollen Detection upon Entrance to the Beehive. Agriculture 2022, 12, 1849. [Google Scholar] [CrossRef]
- Song, B.; Chen, J.; Liu, W.; Fang, J.; Xue, Y.; Liu, X. YOLO-ELWNet: A lightweight object detection network. Neurocomputing 2025, 636, 129904. [Google Scholar] [CrossRef]
- Chen, R.; Wang, P.; Lin, B.; Wang, L.; Zeng, X.; Hu, X.; Yuan, J.; Li, J.; Ren, J.; Zhao, H. An optimized lightweight real-time detection network model for IoT embedded devices. Sci. Rep. 2025, 15, 3839. [Google Scholar] [CrossRef]
- Varna, D.; Abromavičius, V. A System for a Real-Time Electronic Component Detection and Classification on a Conveyor Belt. Appl. Sci. 2022, 12, 5608. [Google Scholar] [CrossRef]
- Murthy, C.B.; Hashmi, M.F.; Bokde, N.D.; Geem, Z.W. Investigations of object detection in images/videos using various deep learning techniques and embedded platforms—A comprehensive review. Appl. Sci. 2020, 10, 3280. [Google Scholar] [CrossRef]
- Ahmed, M.; Hashmi, K.A.; Pagani, A.; Liwicki, M.; Stricker, D.; Afzal, M.Z. Survey and performance analysis of deep learning based object detection in challenging environments. Sensors 2021, 21, 5116. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wang, J.G.; Xu, K. Deep learning for object detection, classification and tracking in industry applications. Sensors 2021, 21, 7349. [Google Scholar] [CrossRef]
- Jiang, D.; Wang, H.; Li, T.; Gouda, M.A.; Zhou, B. Real-time tracker of chicken for poultry based on attention mechanism-enhanced YOLO-Chicken algorithm. Comput. Electron. Agric. 2025, 237, 110640. [Google Scholar] [CrossRef]
- Du, Y.; Pan, N.; Xu, Z.; Deng, F.; Shen, Y.; Kang, H. Pavement distress detection and classification based on YOLO network. Int. J. Pavement Eng. 2021, 22, 1659–1672. [Google Scholar] [CrossRef]
- Lee, Y.W.; Kim, K.W.; Hoang, T.M.; Arsalan, M.; Park, K.R. Deep residual CNN-based ocular recognition based on rough pupil detection in the images by NIR camera sensor. Sensors 2019, 19, 842. [Google Scholar] [CrossRef]
- Le, N.T.; Wang, J.W.; Wang, C.C.; Nguyen, T.N. Automatic defect inspection for coated eyeglass based on symmetrized energy analysis of color channels. Symmetry 2019, 11, 1518. [Google Scholar] [CrossRef]
- Bekhet, S.; Alahmer, H. A robust deep learning approach for glasses detection in non-standard facial images. IET Biom. 2021, 10, 74–86. [Google Scholar] [CrossRef]
- Huo, D.; Wang, J.; Qian, Y.; Yang, Y.H. Glass segmentation with RGB-thermal image pairs. IEEE Trans. Image Process. 2023, 32, 1911–1926. [Google Scholar] [CrossRef]
- Jain, R.; Goyal, A.; Venkatesan, K. Real-time eyeglass detection using transfer learning for non-standard facial data. Int. J. Electr. Comput. Eng. 2022, 12, 3709–3720. [Google Scholar] [CrossRef]
- Matuzevičius, D. A Retrospective Analysis of Automated Image Labeling for Eyewear Detection Using Zero-Shot Object Detectors. Electronics 2024, 13, 4763. [Google Scholar] [CrossRef]
- Al Qudah, M.; Mohamed, A.; Lutfi, S. Analysis of Facial Occlusion Challenge in Thermal Images for Human Affective State Recognition. Sensors 2023, 23, 3513. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Guo, J. ERAT: Eyeglasses removal with attention. Pattern Recognit. 2025, 158, 110970. [Google Scholar] [CrossRef]
- Wang, J.; Liu, P.; Liu, J.; Xu, W. Text-guided Eyeglasses Manipulation with Spatial Constraints. IEEE Trans. Multimed. 2023, 26, 4375–4388. [Google Scholar] [CrossRef]
- Matuzevičius, D. Diverse Dataset for Eyeglasses Detection: Extending the Flickr-Faces-HQ (FFHQ) Dataset. Sensors 2024, 24, 7697. [Google Scholar] [CrossRef]
- Abromavicius, V.; Serackis, A.; Katkevicius, A.; Plonis, D. Evaluation of EEG-based Complementary Features for Assessment of Visual Discomfort based on Stable Depth Perception Time. Radioengineering 2018, 27, 1138–1146. [Google Scholar] [CrossRef]
- Alionte, C.G.; Ungureanu, L.M.; Alexandru, T.M. Innovation process for optical face scanner used to customize 3D printed spectacles. Materials 2022, 15, 3496. [Google Scholar] [CrossRef]
- Marelli, D.; Bianco, S.; Ciocca, G. Designing an AI-based virtual try-on web application. Sensors 2022, 22, 3832. [Google Scholar] [CrossRef]
- Yu, R.; Ren, W.; Zhao, M.; Wang, J.; Wu, D.; Xie, Y. Transparent objects segmentation based on polarization imaging and deep learning. Opt. Commun. 2024, 555, 130246. [Google Scholar] [CrossRef]
- Yan, T.; Xu, S.; Huang, H.; Li, H.; Tan, L.; Chang, X.; Lau, R.W. NRGlassNet: Glass surface detection from visible and near-infrared image pairs. Knowl.-Based Syst. 2024, 294, 111722. [Google Scholar] [CrossRef]
- Basbrain, A.M.; Al-Taie, I.; Azeez, N.; Gan, J.Q.; Clark, A. Shallow convolutional neural network for eyeglasses detection in facial images. In Proceedings of the 2017 9th Computer Science and Electronic Engineering (CEEC), London, UK, 27–29 September 2017; pp. 157–161. [Google Scholar]
- Zhang, B.; Wang, Z.; Ling, Y.; Guan, Y.; Zhang, S.; Li, W.; Wei, L.; Zhang, C. ShuffleTrans: Patch-wise weight shuffle for transparent object segmentation. Neural Netw. 2023, 167, 199–212. [Google Scholar] [CrossRef] [PubMed]
- Tamulionis, M.; Sledevič, T.; Abromavičius, V.; Kurpytė-Lipnickė, D.; Navakauskas, D.; Serackis, A.; Matuzevičius, D. Finding the Least Motion-Blurred Image by Reusing Early Features of Object Detection Network. Appl. Sci. 2023, 13, 1264. [Google Scholar] [CrossRef]
- Karras, T.; Laine, S.; Aila, T. A style-based generator architecture for generative adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 4401–4410. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Tan, M.; Le, Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the International Conference on Machine Learning. PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Tan, M.; Le, Q. EfficientNetV2: Smaller Models and Faster Training. In Proceedings of the International Conference on Machine Learning. PMLR, Virtually, 18–24 July 2021; pp. 10096–10106. [Google Scholar]
- Diwan, T.; Anirudh, G.; Tembhurne, J.V. Object detection using YOLO: Challenges, architectural successors, datasets and applications. Multimed. Tools Appl. 2023, 82, 9243–9275. [Google Scholar] [CrossRef] [PubMed]
- Van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009. [Google Scholar]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: https://www.tensorflow.org/ (accessed on 16 April 2025).
- Chollet, F. Keras. Available online: https://keras.io (accessed on 16 April 2025).
- Wood, L.; Tan, Z.; Stenbit, I.; Bischof, J.; Zhu, S.; Chollet, F.; Sreepathihalli, D.; Sampath, R. KerasCV. Available online: https://github.com/keras-team/keras-cv (accessed on 16 April 2025).
- Buslaev, A.; Iglovikov, V.I.; Khvedchenya, E.; Parinov, A.; Druzhinin, M.; Kalinin, A.A. Albumentations: Fast and Flexible Image Augmentations. Information 2020, 11, 125. [Google Scholar] [CrossRef]
- OpenCV Team. OpenCV: Open Source Computer Vision Library. Available online: https://opencv.org/ (accessed on 16 April 2025).
- Matuzevičius, D. Synthetic Data Generation for the Development of 2D Gel Electrophoresis Protein Spot Models. Appl. Sci. 2022, 12, 4393. [Google Scholar] [CrossRef]
- Matuzevičius, D. Rulers2023: An Annotated Dataset of Synthetic and Real Images for Ruler Detection Using Deep Learning. Electronics 2023, 12, 4924. [Google Scholar] [CrossRef]
Backbone | Parameters 1 | Depth 2 | Size (MB) 3 | Input 4 |
---|---|---|---|---|
MobileNet (0.5) 5 | M | 27 | ||
MobileNetV2 (0.5) 5 | M | 52 | ||
DenseNet121 | M | 120 | ||
EfficientNetB0 | M | 81 | ||
EfficientNetB1 | M | 115 | ||
EfficientNetB2 | M | 115 | ||
EfficientNetB3 | M | 130 | ||
EfficientNetB4 | M | 160 | ||
EfficientNetB5 | M | 194 | ||
EfficientNetV2B0 | M | 91 | ||
EfficientNetV2B1 | M | 111 | ||
EfficientNetV2B2 | M | 116 | ||
EfficientNetV2B3 | M | 136 |
Model | Metric | Quantization Type | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
none 5 | float16 | dynamic int8 | full int8 | |||||||||
Mean | s.d. | Mean | s.d. | Change 6 | Mean | s.d. | Change 6 | Mean | s.d. | Change 6 | ||
MobileNet (0.5) | Size (MB) 1 | 21.14 | — | 10.58 | — | 0.50 | 5.390 | — | 0.25 | 5.440 | — | 0.26 |
IoU 2 | 0.901 | 0.002 | 0.901 | 0.002 | 1.00 | 0.899 | 0.002 | 1.00 | 0.873 | 0.019 | 0.97 | |
RPi5 On 3 | 26.25 | 0.622 | 26.51 | 0.108 | 1.01 | 41.18 | 0.733 | 1.57 | 72.63 | 0.219 | 2.77 | |
RPi5 Off 4 | 17.80 | 0.205 | 18.44 | 0.227 | 1.04 | 26.04 | 0.455 | 1.46 | 39.32 | 0.037 | 2.21 | |
Jetson On 3 | 22.39 | 0.024 | 22.37 | 0.160 | 1.00 | 40.66 | 0.127 | 1.82 | 50.53 | 0.057 | 2.26 | |
Jetson Off 4 | 17.13 | 0.053 | 17.32 | 0.026 | 1.01 | 28.25 | 0.047 | 1.65 | 30.34 | 0.104 | 1.77 | |
MobileNetV2 (0.5) | Size (MB) 1 | 47.64 | — | 23.85 | — | 0.50 | 12.08 | — | 0.25 | 12.18 | — | 0.26 |
IoU 2 | 0.893 | 0.004 | 0.893 | 0.004 | 1.00 | 0.893 | 0.003 | 1.00 | 0.878 | 0.013 | 0.98 | |
RPi5 On 3 | 28.46 | 0.180 | 28.82 | 0.285 | 1.01 | 32.38 | 0.821 | 1.14 | 65.73 | 0.132 | 2.31 | |
RPi5 Off 4 | 17.24 | 0.234 | 17.90 | 0.244 | 1.04 | 21.16 | 0.384 | 1.23 | 34.11 | 0.140 | 1.98 | |
Jetson On 3 | 26.73 | 0.050 | 26.76 | 0.062 | 1.00 | 38.14 | 0.150 | 1.43 | 46.45 | 0.054 | 1.74 | |
Jetson Off 4 | 18.63 | 0.051 | 18.69 | 0.057 | 1.00 | 23.86 | 0.088 | 1.28 | 26.76 | 0.092 | 1.44 | |
DenseNet121 | Size (MB) 1 | 62.64 | — | 31.41 | — | 0.50 | 16.08 | — | 0.26 | 16.02 | — | 0.26 |
IoU 2 | 0.891 | 0.010 | 0.891 | 0.010 | 1.00 | 0.892 | 0.012 | 1.00 | 0.257 | 0.196 | 0.29 | |
RPi5 On 3 | 1.488 | 0.004 | 1.486 | 0.005 | 1.00 | 2.572 | 0.008 | 1.73 | 4.883 | 0.007 | 3.28 | |
RPi5 Off 4 | 0.697 | 0.002 | 0.694 | 0.001 | 1.00 | 2.037 | 0.038 | 2.92 | 2.581 | 0.005 | 3.70 | |
Jetson On 3 | 1.268 | 0.000 | 1.269 | 0.009 | 1.00 | 3.349 | 0.002 | 2.64 | 3.612 | 0.002 | 2.85 | |
Jetson Off 4 | 0.989 | 0.000 | 0.989 | 0.001 | 1.00 | 2.810 | 0.002 | 2.84 | 2.699 | 0.002 | 2.73 | |
EfficientNetB0 | Size (MB) 1 | 60.33 | — | 30.22 | — | 0.50 | 15.58 | — | 0.26 | 15.94 | — | 0.26 |
IoU 2 | 0.905 | 0.007 | 0.904 | 0.007 | 1.00 | 0.904 | 0.006 | 1.00 | 0.848 | 0.047 | 0.94 | |
RPi5 On 3 | 5.217 | 0.039 | 5.201 | 0.038 | 1.00 | 6.179 | 0.035 | 1.18 | 15.64 | 0.040 | 3.00 | |
RPi5 Off 4 | 4.094 | 0.021 | 4.213 | 0.015 | 1.03 | 4.933 | 0.059 | 1.21 | 4.516 | 0.009 | 1.10 | |
Jetson On 3 | 5.012 | 0.006 | 5.014 | 0.007 | 1.00 | 6.522 | 0.014 | 1.30 | 11.59 | 0.004 | 2.31 | |
Jetson Off 4 | 4.257 | 0.190 | 4.341 | 0.074 | 1.02 | 5.778 | 0.012 | 1.36 | 4.726 | 0.006 | 1.11 | |
EfficientNetB1 | Size (MB) 1 | 69.83 | — | 35.00 | — | 0.50 | 18.22 | — | 0.26 | 18.74 | — | 0.27 |
IoU 2 | 0.904 | 0.010 | 0.904 | 0.010 | 1.00 | 0.905 | 0.007 | 1.00 | 0.790 | 0.164 | 0.87 | |
RPi5 On 3 | 3.748 | 0.035 | 3.779 | 0.020 | 1.01 | 4.387 | 0.027 | 1.17 | 11.19 | 0.020 | 2.99 | |
RPi5 Off 4 | 2.961 | 0.010 | 3.007 | 0.015 | 1.02 | 3.651 | 0.029 | 1.23 | 3.061 | 0.006 | 1.03 | |
Jetson On 3 | 3.533 | 0.004 | 3.536 | 0.004 | 1.00 | 4.636 | 0.008 | 1.31 | 8.186 | 0.011 | 2.32 | |
Jetson Off 4 | 3.049 | 0.004 | 3.079 | 0.004 | 1.01 | 4.166 | 0.006 | 1.37 | 3.235 | 0.003 | 1.06 | |
EfficientNetB2 | Size (MB) 1 | 78.91 | — | 39.52 | — | 0.50 | 20.53 | — | 0.26 | 21.09 | — | 0.27 |
IoU 2 | 0.913 | 0.002 | 0.913 | 0.002 | 1.00 | 0.911 | 0.002 | 1.00 | 0.895 | 0.008 | 0.98 | |
RPi5 On 3 | 3.410 | 0.026 | 3.405 | 0.021 | 1.00 | 4.169 | 0.024 | 1.22 | 10.37 | 0.017 | 3.04 | |
RPi5 Off 4 | 2.634 | 0.006 | 2.662 | 0.012 | 1.01 | 3.379 | 0.030 | 1.28 | 2.878 | 0.003 | 1.09 | |
Jetson On 3 | 3.189 | 0.007 | 3.190 | 0.004 | 1.00 | 4.321 | 0.007 | 1.35 | 7.566 | 0.003 | 2.37 | |
Jetson Off 4 | 2.730 | 0.082 | 2.785 | 0.003 | 1.02 | 3.886 | 0.005 | 1.42 | 3.034 | 0.001 | 1.11 | |
EfficientNetB3 | Size (MB) 1 | 94.80 | — | 47.50 | — | 0.50 | 24.72 | — | 0.26 | 25.46 | — | 0.27 |
IoU 2 | 0.905 | 0.002 | 0.905 | 0.002 | 1.00 | 0.903 | 0.002 | 1.00 | 0.878 | 0.013 | 0.97 | |
RPi5 On 3 | 2.487 | 0.013 | 2.511 | 0.016 | 1.01 | 3.039 | 0.013 | 1.22 | 7.444 | 0.023 | 2.99 | |
RPi5 Off 4 | 1.908 | 0.007 | 1.938 | 0.006 | 1.02 | 2.491 | 0.011 | 1.31 | 2.117 | 0.001 | 1.11 | |
Jetson On 3 | 2.269 | 0.004 | 2.264 | 0.005 | 1.00 | 3.125 | 0.004 | 1.38 | 5.439 | 0.001 | 2.40 | |
Jetson Off 4 | 1.971 | 0.001 | 1.988 | 0.012 | 1.01 | 2.857 | 0.004 | 1.45 | 2.206 | 0.001 | 1.12 | |
EfficientNetB4 | Size (MB) 1 | 129.8 | — | 65.03 | — | 0.50 | 33.92 | — | 0.26 | 34.96 | — | 0.27 |
IoU 2 | 0.903 | 0.010 | 0.903 | 0.010 | 1.00 | 0.901 | 0.009 | 1.00 | 0.776 | 0.190 | 0.86 | |
RPi5 On 3 | 1.816 | 0.007 | 1.796 | 0.004 | 0.99 | 2.248 | 0.006 | 1.24 | 5.493 | 0.011 | 3.03 | |
RPi5 Off 4 | 1.356 | 0.005 | 1.372 | 0.004 | 1.01 | 1.845 | 0.012 | 1.36 | 1.562 | 0.001 | 1.15 | |
Jetson On 3 | 1.555 | 0.003 | 1.553 | 0.002 | 1.00 | 2.289 | 0.013 | 1.47 | 3.985 | 0.001 | 2.56 | |
Jetson Off 4 | 1.369 | 0.001 | 1.382 | 0.001 | 1.01 | 2.121 | 0.002 | 1.55 | 1.650 | 0.000 | 1.21 | |
EfficientNetB5 | Size (MB) 1 | 180.0 | — | 90.13 | — | 0.50 | 46.97 | — | 0.26 | 48.43 | — | 0.27 |
IoU 2 | 0.912 | 0.003 | 0.912 | 0.003 | 1.00 | 0.908 | 0.001 | 1.00 | 0.680 | 0.339 | 0.75 | |
RPi5 On 3 | 1.247 | 0.003 | 1.246 | 0.004 | 1.00 | 1.632 | 0.004 | 1.31 | 3.830 | 0.006 | 3.07 | |
RPi5 Off 4 | 0.929 | 0.002 | 0.928 | 0.002 | 1.00 | 1.317 | 0.006 | 1.42 | 1.090 | 0.001 | 1.17 | |
Jetson On 3 | 1.045 | 0.001 | 1.045 | 0.001 | 1.00 | 1.612 | 0.010 | 1.54 | 2.748 | 0.001 | 2.63 | |
Jetson Off 4 | 0.922 | 0.001 | 0.926 | 0.001 | 1.00 | 1.496 | 0.001 | 1.62 | 1.153 | 0.000 | 1.25 | |
EfficientNetV2B0 | Size (MB) 1 | 67.36 | — | 33.74 | — | 0.50 | 17.53 | — | 0.26 | 18.05 | — | 0.27 |
IoU 2 | 0.899 | 0.008 | 0.899 | 0.008 | 1.00 | 0.900 | 0.009 | 1.00 | 0.862 | 0.046 | 0.96 | |
RPi5 On 3 | 5.081 | 0.010 | 5.080 | 0.010 | 1.00 | 8.670 | 0.068 | 1.71 | 16.37 | 0.028 | 3.22 | |
RPi5 Off 4 | 2.978 | 0.010 | 3.112 | 0.038 | 1.04 | 6.018 | 0.050 | 2.02 | 5.848 | 0.034 | 1.96 | |
Jetson On 3 | 4.121 | 0.006 | 4.125 | 0.004 | 1.00 | 7.905 | 0.014 | 1.92 | 11.43 | 0.004 | 2.77 | |
Jetson Off 4 | 3.390 | 0.003 | 3.403 | 0.004 | 1.00 | 6.368 | 0.008 | 1.88 | 5.702 | 0.005 | 1.68 | |
EfficientNetV2B1 | Size (MB) 1 | 71.17 | — | 35.65 | — | 0.50 | 18.61 | — | 0.26 | 19.21 | — | 0.27 |
IoU 2 | 0.905 | 0.003 | 0.905 | 0.003 | 1.00 | 0.905 | 0.003 | 1.00 | 0.894 | 0.002 | 0.99 | |
RPi5 On 3 | 3.698 | 0.008 | 3.698 | 0.007 | 1.00 | 6.238 | 0.046 | 1.69 | 12.31 | 0.014 | 3.33 | |
RPi5 Off 4 | 2.176 | 0.021 | 2.235 | 0.007 | 1.03 | 4.387 | 0.035 | 2.02 | 4.540 | 0.040 | 2.09 | |
Jetson On 3 | 2.998 | 0.002 | 3.000 | 0.003 | 1.00 | 5.969 | 0.010 | 1.99 | 8.547 | 0.003 | 2.85 | |
Jetson Off 4 | 2.460 | 0.003 | 2.459 | 0.002 | 1.00 | 4.749 | 0.006 | 1.93 | 4.424 | 0.004 | 1.80 | |
EfficientNetV2B2 | Size (MB) 1 | 82.62 | — | 41.39 | — | 0.50 | 21.59 | — | 0.26 | 22.29 | — | 0.27 |
IoU 2 | 0.907 | 0.003 | 0.907 | 0.003 | 1.00 | 0.905 | 0.002 | 1.00 | 0.892 | 0.001 | 0.98 | |
RPi5 On 3 | 3.305 | 0.010 | 3.361 | 0.021 | 1.02 | 5.614 | 0.027 | 1.70 | 10.99 | 0.015 | 3.33 | |
RPi5 Off 4 | 2.049 | 0.008 | 2.061 | 0.010 | 1.01 | 4.115 | 0.050 | 2.01 | 4.047 | 0.007 | 1.97 | |
Jetson On 3 | 2.647 | 0.005 | 2.647 | 0.002 | 1.00 | 5.362 | 0.008 | 2.03 | 7.261 | 0.441 | 2.74 | |
Jetson Off 4 | 2.194 | 0.002 | 2.197 | 0.002 | 1.00 | 4.337 | 0.007 | 1.98 | 4.009 | 0.004 | 1.83 | |
EfficientNetV2B3 | Size (MB) 1 | 102.8 | — | 51.51 | — | 0.50 | 26.95 | — | 0.26 | 27.88 | — | 0.27 |
IoU 2 | 0.908 | 0.002 | 0.908 | 0.002 | 1.00 | 0.907 | 0.002 | 1.00 | 0.895 | 0.001 | 0.99 | |
RPi5 On 3 | 2.539 | 0.007 | 2.571 | 0.006 | 1.01 | 4.548 | 0.044 | 1.79 | 8.297 | 0.012 | 3.27 | |
RPi5 Off 4 | 1.571 | 0.019 | 1.539 | 0.009 | 0.98 | 3.239 | 0.040 | 2.06 | 3.138 | 0.023 | 2.00 | |
Jetson On 3 | 1.962 | 0.002 | 1.962 | 0.002 | 1.00 | 4.106 | 0.006 | 2.09 | 5.742 | 0.001 | 2.93 | |
Jetson Off 4 | 1.615 | 0.001 | 1.616 | 0.001 | 1.00 | 3.464 | 0.003 | 2.15 | 3.106 | 0.003 | 1.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giedra, H.; Sledevič, T.; Matuzevičius, D. Deploying Optimized Deep Vision Models for Eyeglasses Detection on Low-Power Platforms. Electronics 2025, 14, 2796. https://doi.org/10.3390/electronics14142796
Giedra H, Sledevič T, Matuzevičius D. Deploying Optimized Deep Vision Models for Eyeglasses Detection on Low-Power Platforms. Electronics. 2025; 14(14):2796. https://doi.org/10.3390/electronics14142796
Chicago/Turabian StyleGiedra, Henrikas, Tomyslav Sledevič, and Dalius Matuzevičius. 2025. "Deploying Optimized Deep Vision Models for Eyeglasses Detection on Low-Power Platforms" Electronics 14, no. 14: 2796. https://doi.org/10.3390/electronics14142796
APA StyleGiedra, H., Sledevič, T., & Matuzevičius, D. (2025). Deploying Optimized Deep Vision Models for Eyeglasses Detection on Low-Power Platforms. Electronics, 14(14), 2796. https://doi.org/10.3390/electronics14142796